Adaptive galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity

被引:48
作者
Chen, ZM [1 ]
Dai, SB [1 ]
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
关键词
a posteriori error estimates; Ginzburg Landau vortices; superconductivity; adaptive; nonlinear PDEs;
D O I
10.1137/S0036142998349102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time-dependent Ginzburg-Landau model which describes the phase transitions taking place in superconductors is a coupled system of nonlinear parabolic equations. It is discretized semi-implicitly in time and in space via continuous piecewise linear finite elements. A posteriori error estimates are derived for the (LL2)-L-infinity norm by studying a dual problem of the linearization of the original system, other than the dual of error equations. Numerical simulations are included which illustrate the reliability of the estimators and the flexibility of the proposed adaptive method.
引用
收藏
页码:1961 / 1985
页数:25
相关论文
共 26 条
[21]   ON THE SMOOTHING PROPERTY OF THE GALERKIN METHOD FOR PARABOLIC EQUATIONS [J].
LUSKIN, M ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (01) :93-113
[22]   A linearized Crank-Nicolson-Galerkin method for the Ginzburg-Landau model [J].
Mu, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04) :1028-1039
[23]  
NOCHETTO RH, 1995, MATH COMPUT, V64, P1, DOI 10.1090/S0025-5718-1995-1270622-3
[24]  
Nochetto RH, 2000, MATH COMPUT, V69, P1, DOI 10.1090/S0025-5718-99-01097-2
[25]  
NOCHETTO RH, 1993, I LOMBARDO SCI LET A, V127, P67
[26]  
Tinkham M., 1975, INTRO SUPERCONDUCTIV