Bifurcations and patterns in compromise processes

被引:194
作者
Ben-Naim, E
Krapivsky, PL
Redner, S
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Boston Univ, Ctr Biodynam, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
bifurcations and patterns; compromise process; opinion dynamics model;
D O I
10.1016/S0167-2789(03)00171-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an opinion dynamics model in which agents reach compromise via pairwise interactions. When the opinions of two agents are sufficiently close, they both acquire the average of their initial opinions; otherwise, they do not interact. Generically, the system reaches a steady state with a finite number of isolated, non-interacting opinion clusters ("parties"). As the initial opinion range increases, the number of such parties undergoes a periodic sequence of bifurcations. Both major and minor parties emerge, and these are organized in alternating pattern. This behavior is illuminated by considering discrete opinion states. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 204
页数:15
相关论文
共 39 条
  • [31] Fate of zero-temperature Ising ferromagnets
    Spirin, V
    Krapivsky, PL
    Redner, S
    [J]. PHYSICAL REVIEW E, 2001, 63 (03): : 361181 - 361184
  • [32] Stauffer D, 2002, JASSS-J ARTIF SOC S, V5
  • [33] Strogatz S.H., 1994, NONLINEAR DYNAMICS C
  • [34] Opinion evolution in closed community
    Sznajd-Weron, K
    Sznajd, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (06): : 1157 - 1165
  • [35] Constrained opinion dynamics: freezing and slow evolution
    Vazquez, F
    Krapivsky, PL
    Redner, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (03): : L61 - L68
  • [36] Ordering phase transition in the one-dimensional Axelrod model
    Vilone, D
    Vespignani, A
    Castellano, C
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2002, 30 (03) : 399 - 406
  • [37] WEIDLICH W, 2000, SCIODYNAMICS SYSTEMA
  • [38] WEISBUCH G, CONDMAT0111494
  • [39] Zwillinger D., 1989, HDB DIFFERENTIAL EQU