Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses

被引:121
作者
Kangasjarvi, Saijaliisa [1 ]
Lepisto, Anna [1 ]
Hannikainen, Kati [1 ]
Piippo, Mirva [1 ]
Luomala, Eeva-Maria [2 ]
Aro, Eva-Mari [1 ]
Rintamaki, Eevi [1 ]
机构
[1] Univ Turku, Dept Biol, FI-20014 Turku, Finland
[2] Agrifood Res Finland, FI-21500 Piikkio, Finland
关键词
acclimation; Arabidopsis thaliana; chloroplast ascorbate peroxidase; peroxiredoxin; photo-oxidative stress; signalling;
D O I
10.1042/BJ20080030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Photosynthetic light reactions comprise a significant source of hydrogen peroxide (H2O2) in illuminated leaves. APXs (ascorbate peroxidases) reduce H2O2 to water and play an important role in the antioxidant system of plants. In the present study we addressed the significance of chloroplast APXs in stress tolerance and signalling in Arabidopsis thaliana. To this end, T-DNA (transfer DNA) insertion mutants tapx, sapx and tapx sapx, lacking the tAPX (thylakoid-bound APX), sAPX (stromal APX) or both respectively, were characterized. Photo-oxidative stress during germination led to bleaching of chloroplasts in sapx single-mutant and particularly in the tapx sapx double-mutant plants, whereas the greening process of wild-type and tapx plants was only partially impaired. Mature leaves of tapx sapx double mutants were also susceptible to short-term photo-oxidative stress induced by high light or methyl viologen treatments. After a 2-week acclimation period under high light or under low temperature, none of the mutants exhibited enhanced stress symptoms. Immunoblot analysis revealed that high-light-stress-acclimated tapx sapx double mutants compensated for the absence of tAPX and sAPX by increasing the level of 2-cysteine peroxiredoxin. Furthermore, the absence of tAPX and sAPX induced alterations in the transcriptomic profile of tapx sapx double-mutant plants already under quite optimal growth conditions. We conclude that sAPX is particularly important for photoprotection during the early greening process. In mature leaves, tAPX and sAPX are functionally redundant, and crucial upon sudden onset of oxidative stress. Moreover, chloroplast APXs contribute to chloroplast retrograde signalling pathways upon slight fluctuations in the accumulation of H2O2 in chloroplasts.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 57 条
[1]   Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses [J].
Ahlfors, R ;
Lång, S ;
Overmyer, K ;
Jaspers, P ;
Brosché, M ;
Taurianinen, A ;
Kollist, H ;
Tuominen, H ;
Belles-Boix, E ;
Piippo, M ;
Inzé, D ;
Palva, ET ;
Kangasjärvi, J .
PLANT CELL, 2004, 16 (07) :1925-1937
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[4]   Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism [J].
Baier, M ;
Noctor, G ;
Foyer, CH ;
Dietz, KJ .
PLANT PHYSIOLOGY, 2000, 124 (02) :823-832
[5]   Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions [J].
Becker, Beril ;
Holtgrefe, Simone ;
Jung, Sabrina ;
Wunrau, Christina ;
Kandlbinder, Andrea ;
Baier, Margarete ;
Dietz, Karl-Josef ;
Backhausen, Jan E. ;
Scheibe, Renate .
PLANTA, 2006, 224 (02) :380-393
[6]   Growth signalling pathways in Arabidopsis and the AGC protein kinases [J].
Bögre, L ;
Ökrész, L ;
Henriques, R ;
Anthony, RG .
TRENDS IN PLANT SCIENCE, 2003, 8 (09) :424-431
[7]   Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis [J].
Borsani, O ;
Zhu, JH ;
Verslues, PE ;
Sunkar, R ;
Zhu, JK .
CELL, 2005, 123 (07) :1279-1291
[8]   The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage [J].
Broin, M ;
Cuiné, S ;
Eymery, F ;
Rey, P .
PLANT CELL, 2002, 14 (06) :1417-1432
[9]   Ascorbate peroxidase - A prominent membrane protein in oilseed glyoxysomes [J].
Bunkelmann, JR ;
Trelease, RN .
PLANT PHYSIOLOGY, 1996, 110 (02) :589-598
[10]   AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage [J].
Cheng, Ning-Hui ;
Liu, Jian-Zhong ;
Brock, Amanda ;
Nelsono, Richard S. ;
Hirschi, Kendal D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (36) :26280-26288