Stable chaotic waves generated by hyperbolic PDEs

被引:4
作者
Babin, AV [1 ]
Bunimovich, LA [1 ]
机构
[1] GEORGIA INST TECHNOL,ATLANTA,GA 30332
关键词
D O I
10.1088/0951-7715/9/4/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear wave equations. For some classes of potentials we prove the property of homotopy stability of these equations. This property allows us to construct an infinite collection of families of solutions characterized by complex spatial patterns that are preserved in the course of the dynamics. These classes correspond to elements of a fundamental group generated by a potential.
引用
收藏
页码:853 / 875
页数:23
相关论文
共 13 条
[1]  
AFRAIMOVICH VS, 1994, IN PRESS T AM MATH S
[2]  
Babin A.V., 1992, ATTRACTORS EVOLUTION
[3]  
BABIN AV, 1994, IN PRESS DOKL AKAD N
[4]  
BABIN AV, 1994, IN PRESS MAT SBORNIK
[5]  
BUNIMOVICH LA, 1994, IN PRESS PHYSICA D
[6]  
BUNIMOVICH LA, 1993, COUPLED MAP LATTICES
[7]  
Fomenko A.T., 1986, Homotopic Topology
[8]   ASYMPTOTIC-BEHAVIOR OF A 2-DIMENSIONAL RANDOM-WALK WITH TOPOLOGICAL CONSTRAINTS [J].
KORALOV, LB ;
NECHAEV, SK ;
SINAI, YG .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1993, 38 (02) :296-306
[9]  
KUKSIN SB, 1989, MATH USSR SB, V64, P397
[10]  
Lions J. L., 1969, QUELQUES METHODES RE