Regulation of NF-κB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor

被引:138
作者
Rocha, S
Garrett, MD
Campbell, KJ
Schumm, K
Perkins, ND
机构
[1] Univ Dundee, Sch Life Sci, Div Gene Regulat & Express, Dundee DD1 5EH, Scotland
[2] Canc Res UK, Ctr Canc Therapeut, Haddow Labs, Inst Canc Res, Sutton, Surrey, England
关键词
ARF; ATR; chk1; NF-kappa B; p53;
D O I
10.1038/sj.emboj.7600608
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ARF tumour suppressor is a central component of the cellular defence against oncogene activation. In addition to activating p53 through binding Mdm2, ARF possesses other functions, including an ability to repress the transcriptional activity of the antiapoptotic RelA( p65) NF-kappa B subunit. Here we demonstrate that ARF induces the ATR- and Chk1-dependent phosphorylation of the RelA transactivation domain at threonine 505, a site required for ARF-dependent repression of RelA transcriptional activity. Consistent with this effect, ATR and Chk1 are required for ARF-induced sensitivity to tumour necrosis factor alpha-induced cell death. Significantly, ATR activity is also required for ARF-induced p53 activity and inhibition of proliferation. ARF achieves these effects by activating ATR and Chk1. Furthermore, ATR and its scaffold protein BRCA1, but not Chk1, relocalise to specific nucleolar sites. These results reveal novel functions for ARF, ATR and Chk1 together with a new pathway regulating RelA NF-kappa B function. Moreover, this pathway provides a mechanism through which ARF can remodel the cellular response to an oncogenic challenge and execute its function as a tumour suppressor.
引用
收藏
页码:1157 / 1169
页数:13
相关论文
共 50 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Chk1 and Chk2 kinases in checkpoint control and cancer [J].
Bartek, J ;
Lukas, J .
CANCER CELL, 2003, 3 (05) :421-429
[3]   Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23 [J].
Bertwistle, D ;
Sugimoto, M ;
Sherr, CJ .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (03) :985-996
[4]   INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence [J].
Brookes, S ;
Rowe, J ;
Ruas, M ;
Llanos, S ;
Clark, PA ;
Lomax, M ;
James, MC ;
Vatcheva, R ;
Bates, S ;
Vousden, KH ;
Parry, D ;
Gruis, N ;
Smit, N ;
Bergman, W ;
Peters, G .
EMBO JOURNAL, 2002, 21 (12) :2936-2945
[5]   p53 represses ribosomal gene transcription [J].
Budde, A ;
Grummt, I .
ONCOGENE, 1999, 18 (04) :1119-1124
[6]   Active repression of antiapoptotic gene expression by ReIA(p65) NF-κB [J].
Campbell, KJ ;
Rocha, S ;
Perkins, ND .
MOLECULAR CELL, 2004, 13 (06) :853-865
[7]   ATM complexes with HDM2 and promotes its rapid phosphorylation in a p53-independent manner in normal and tumor human cells exposed to ionizing radiation [J].
de Toledo, SM ;
Azzam, EI ;
Dahlberg, WK ;
Gooding, TB ;
Little, JB .
ONCOGENE, 2000, 19 (54) :6185-6193
[8]   Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2 [J].
Dumaz, N ;
Meek, DW .
EMBO JOURNAL, 1999, 18 (24) :7002-7010
[9]   Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis [J].
Eischen, CM ;
Weber, JD ;
Roussel, MF ;
Sherr, CJ ;
Cleveland, JL .
GENES & DEVELOPMENT, 1999, 13 (20) :2658-2669
[10]   CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future [J].
Esteller, M .
ONCOGENE, 2002, 21 (35) :5427-5440