Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach

被引:266
作者
Kruszewski, A. [1 ]
Wang, R. [2 ]
Guerra, T. M. [1 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, CNRS, LAMIH, UMR 8530,Lab Ind & Human Automat Control, F-59313 Valenciennes 9, France
[2] Three Gorges Univ, Coll Elect Engn & Informat Technol, Yichang 443002, Peoples R China
关键词
linear matrix inequality (LMI); nonlinear discrete models; nonquadratic Lyapunov function; uncertain Takagi-Sugeno fuzzy model;
D O I
10.1109/TAC.2007.914278
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The discrete-time uncertain nonlinear models are considered in a Takagi-Sugeno form and their stabilization is studied through a nonquadratic Lyapunov function. The classical conditions consider a one-sample variation, here, the main results are obtained considering k samples variation, i.e., Delta V-k(x(t)) = V(x(t + k)) - V(x(t)). The results are shown to always include the classical cases, and several examples illustrate the effectiveness of the approach.
引用
收藏
页码:606 / 611
页数:6
相关论文
共 19 条
[1]  
BOYD L, 1994, STUDIES APPL MATH
[2]  
Chen BS, 2000, IEEE T FUZZY SYST, V8, P249, DOI 10.1109/91.855915
[3]   A new discrete-time robust stability conditions [J].
de Oliveira, MC ;
Bernussou, J ;
Geromel, JC .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :261-265
[4]   Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions [J].
Feng, G .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2003, 11 (05) :605-612
[5]  
Guerra TM, 2001, 10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, P1271, DOI 10.1109/FUZZ.2001.1008890
[6]   LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form [J].
Guerra, TM ;
Vermeiren, L .
AUTOMATICA, 2004, 40 (05) :823-829
[7]  
GUERRA TM, 2004, IFAC WORKSH AFNC OUL
[8]   An LMI-based H∞ fuzzy control system design with TS framework [J].
Hong, SK ;
Langari, R .
INFORMATION SCIENCES, 2000, 123 (3-4) :163-179
[9]   Piecewise quadratic stability of fuzzy systems [J].
Johansson, M ;
Rantzer, A ;
Årzén, KE .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) :713-722
[10]  
Kruszewski A, 2005, IEEE DECIS CONTR P, P3255