Laboratory studies on secondary organic aerosol formation from terpenes

被引:54
作者
Iinuma, Y [1 ]
Böge, O [1 ]
Miao, Y [1 ]
Sierau, B [1 ]
Gnauk, T [1 ]
Herrmann, H [1 ]
机构
[1] Leibniz Inst Tropospharenforsch, D-04318 Leipzig, Germany
关键词
D O I
10.1039/b502160j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The formation of secondary organic aerosol (SOA) following the ozonolysis of terpene has been investigated intensively in recent years. The enhancement of SOA yields from the acid catalysed reactions of organics on aerosol surfaces or in the bulk particle phase has been receiving great attention. Recent studies show that the presence of acidic seed particles increases the SOA yield significantly (M. S. Jang and R. M. Kamens, Environ. Sci. Technol., 2001, 35, 4758, ref. 1; M. S. Jang, N. M. Czoschke, S. Lee and R. M. Kamens, Science, 2002, 298, 814, ref. 2; N. M. Czoschke, M. Jang and R. M. Kamens, Atmos. Environ., 2003, 37, 4287, ref. 3; M. S. Jang, B. Carroll, B. Chandramouli and R. M. Kamens, Environ. Sci. Technol., 2003, 37, 3828, ref. 4; Y. Iinuma, O. Boge, T. Gnauk and H. Herrmann, Atmos. Environ., 2004, 38, 76 1, ref. 5; S. Gao, M. Keywood, N. L. Ng, J. Surratt, V. Varutbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, J. Phys. Chem. A, 2004, 108, 10147, ref. 6). More detailed studies report the formation of higher molecular weight products in SOA (refs. 5 and 6; M. P. Tolocka, M. Jang, J. M. Ginter, F. J. Cox, R. M. Kamens and M. V. Johnston, Environ. Sci. Technol., 2004, 38, 1428, ref. 7; S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Y. Yoo, J. L. Beauchamp, R. P. Hodyss, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 6582, ref. 8) which could result in a non-reversible uptake of organics into the particle phase. Most of the past studies concentrated on the characterisation of the yields of enhanced SOA and its composition from ozonolysis of terpenes in the presence or absence of acidic and neutral seed particles. Recent findings from cyclohexene ozonolysis show that the presence of OH scavengers can also significantly influence the SOA yield.(8) Our new results from the IfT chemistry department aerosol chamber on terpene ozonolysis in the presence of OH scavengers show that the presence of hydroxyl radical scavengers clearly reduces the amount of formed SOA. The OH scavenger strongly depletes the formation of oligomeric compounds in the particle phase in contrast to previous findings (M. D. Keywood, J. H. Kroll, V. Varatbangkul, R. Bahreini, R. C. Flagan and J. H. Seinfeld, Environ. Sci. Technol., 2004, 38, 3343, ref. 9). This result indicates that hydroxyl radicals play an important role in the formation of precursor compounds (e.g., hydroxy pinonaldehyde) for the particle phase heterogeneous acid catalysed reactions leading to the higher molecular weight compounds and thus the enhancement of SOA yields. Better understanding of the role of hydroxyl radicals in the formation of SOA is necessary to distinguish between the contribution of ozonolysis and hydroxyl radicals to the SOA yield. If the recent findings are a ubiquitous phenomenon in the atmosphere, current atmospheric and climate models might underestimate SOA formation yields, particle phase OC contents and its impact on the atmospheric radiation budget.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 43 条
[21]   Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions [J].
Jang, MS ;
Czoschke, NM ;
Lee, S ;
Kamens, RM .
SCIENCE, 2002, 298 (5594) :814-817
[22]   Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols [J].
Jang, MS ;
Carroll, B ;
Chandramouli, B ;
Kamens, RM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (17) :3828-3837
[23]   Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst [J].
Jang, MS ;
Kamens, RM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (24) :4758-4766
[24]   Mass balance of gaseous and particulate products analysis from α-pinene/NOx/air in the presence of natural sunlight [J].
Jaoui, M ;
Kamens, RM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D12) :12541-12558
[25]   Identification of polymers as major components of atmospheric organic aerosols [J].
Kalberer, M ;
Paulsen, D ;
Sax, M ;
Steinbacher, M ;
Dommen, J ;
Prevot, ASH ;
Fisseha, R ;
Weingartner, E ;
Frankevich, V ;
Zenobi, R ;
Baltensperger, U .
SCIENCE, 2004, 303 (5664) :1659-1662
[26]   Aerosol formation from the reaction of α-pinene and ozone using a gas-phase kinetics aerosol partitioning model [J].
Kamens, R ;
Jang, M ;
Chien, CJ ;
Leach, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (09) :1430-1438
[27]   Modeling aerosol formation from α-pinene plus NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory [J].
Kamens, RM ;
Jaoui, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (07) :1394-1405
[28]   Secondary organic aerosol formation from cyclohexene ozonolysis: Effect of OH scavenger and the role of radical chemistry [J].
Keywood, MD ;
Kroll, JH ;
Varutbangkul, V ;
Bahreini, R ;
Flagan, RC ;
Seinfeld, JH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (12) :3343-3350
[29]   Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol [J].
Kiss, G ;
Tombácz, E ;
Varga, B ;
Alsberg, T ;
Persson, L .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (27) :3783-3794
[30]   Formation of new particles in the gas-phase ozonolysis of monoterpenes [J].
Koch, S ;
Winterhalter, R ;
Uherek, E ;
Kolloff, A ;
Neeb, P ;
Moortgat, GK .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (23) :4031-4042