Entanglement in the XX spin chain with an energy current -: art. no. 042318

被引:54
作者
Eisler, V
Zimborás, Z
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary
[2] Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary
来源
PHYSICAL REVIEW A | 2005年 / 71卷 / 04期
关键词
D O I
10.1103/PhysRevA.71.042318
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the ground state of an XX chain that is constrained to carry a current of energy. The von Neumann entropy of a block of L neighboring spins, describing entanglement of the block with the rest of the chain, is computed. Recent calculations have revealed that the entropy in the XX model diverges logarithmically with the size of the subsystem. We show that the presence of the energy current increases the prefactor of the logarithmic growth. This result indicates that the emergence of the energy current gives rise to an increase of entanglement.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Nonequilibrium steady state in a quantum system: One-dimensional transverse ising model with energy current [J].
Antal, T ;
Racz, Z ;
Sasvari, L .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :167-170
[2]   Isotropic transverse XY chain with energy and magnetization currents [J].
Antal, T ;
Racz, Z ;
Rakos, A ;
Schutz, GM .
PHYSICAL REVIEW E, 1998, 57 (05) :5184-5189
[3]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[4]   Entropy growth of shift-invariant states on a quantum spin chain [J].
Fannes, M ;
Haegeman, B ;
Mosonyi, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) :6005-6019
[5]   Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture [J].
Jin, BQ ;
Korepin, VE .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :79-95
[6]   Random matrix theory and entanglement in quantum spin chains [J].
Keating, JP ;
Mezzadri, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :543-579
[7]  
Latorre JI, 2004, QUANTUM INF COMPUT, V4, P48
[8]   2 SOLUBLE MODELS OF AN ANTIFERROMAGNETIC CHAIN [J].
LIEB, E ;
SCHULTZ, T ;
MATTIS, D .
ANNALS OF PHYSICS, 1961, 16 (03) :407-466
[9]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[10]  
Osborne TJ, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.032110