Machine learning for neuroirnaging with scikit-learn

被引:1241
作者
Abraham, Alexandre [1 ,2 ]
Pedregosa, Fabian [1 ,2 ]
Eickenberg, Michael [1 ,2 ]
Gervais, Philippe [1 ,2 ]
Mueller, Andreas [3 ]
Kossaifi, Jean [4 ]
Gramfort, Alexandre [1 ,2 ,5 ]
Thirion, Bertrand [1 ,2 ]
Varoquaux, Gael [1 ,2 ]
机构
[1] INRIA Saclay Ile de France, Parietal Team, Saclay, France
[2] CEA, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette, France
[3] Univ Bonn, Inst Comp Sci 6, Bonn, Germany
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[5] CNRS LTCI, Telecom ParisTech, Inst Mines Telecom, Paris, France
关键词
machine learning; statistical learning; neuroimaging; scikit-learn; !text type='Python']Python[!/text; INDEPENDENT COMPONENT ANALYSIS; RECOGNITION;
D O I
10.3389/fninf.2014.00014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
引用
收藏
页数:10
相关论文
共 37 条
[11]   Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? [J].
Hanson, SJ ;
Matsuka, T ;
Haxby, JV .
NEUROIMAGE, 2004, 23 (01) :156-166
[12]   Brain reading using full brain support vector machines for object recognition: There is no "Face" identification area [J].
Hanson, Stephen Jose ;
Halchenko, Yaroslav O. .
NEURAL COMPUTATION, 2008, 20 (02) :486-503
[13]  
Hastie T., 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, DOI [10.1007/978-0-387-21606-5, DOI 10.1007/978-0-387-21606-5]
[14]   Distributed and overlapping representations of faces and objects in ventral temporal cortex [J].
Haxby, JV ;
Gobbini, MI ;
Furey, ML ;
Ishai, A ;
Schouten, JL ;
Pietrini, P .
SCIENCE, 2001, 293 (5539) :2425-2430
[15]   Matplotlib: A 2D graphics environment [J].
Hunter, John D. .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :90-95
[16]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430
[17]   Independent component analysis of nondeterministic fMRI signal sources [J].
Kiviniemi, V ;
Kantola, JH ;
Jauhiainen, J ;
Hyvärinen, A ;
Tervonen, O .
NEUROIMAGE, 2003, 19 (02) :253-260
[18]   Information-based functional brain mapping [J].
Kriegeskorte, N ;
Goebel, R ;
Bandettini, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3863-3868
[19]   A supervised clustering approach for fMRI-based inference of brain states [J].
Michel, Vincent ;
Gramfort, Alexandre ;
Varoquaux, Gael ;
Eger, Evelyn ;
Keribin, Christine ;
Thirion, Bertrand .
PATTERN RECOGNITION, 2012, 45 (06) :2041-2049
[20]   Analysis of functional magnetic resonance imaging in Python']Python [J].
Millman, K. Jarrod ;
Brett, Matthew .
COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) :52-55