Template-synthesized protein nanotubes

被引:181
作者
Hou, SF
Wang, JH
Martin, CR [1 ]
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Anesthesiol, Gainesville, FL 32611 USA
[3] Univ Florida, Ctr Res Bionano Interface, Gainesville, FL 32611 USA
关键词
D O I
10.1021/nl048305p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A layer-by-layer deposition strategy for preparing protein nanotubes within the pores of a nanopore alumina template membrane is described. This method entails alternately exposing the template membrane to a solution of the desired protein and then to a solution of glutaraldehyde, which acts as cross-linking agent to hold the protein layers together. The number of layers of protein that make up the nanotube walls can be controlled at will by varying the number of alternate protein/glutaraldehyde cycles. After the desired number of layers have been deposited on the pore walls, the alumina template can be dissolved to liberate the protein nanotubes. We show here that glucose oxidase nanotubes prepared in this way catalyze glucose oxidation and that hemoglobin nanotubes retain their heme electroactivity. Furthermore, for the glucose oxidase nanotubes, the enzymatic activity increases with the nanotube wall thickness.
引用
收藏
页码:231 / 234
页数:4
相关论文
共 27 条
[1]   Bioelectrochemical single-walled carbon nanotubes [J].
Azamian, BR ;
Davis, JJ ;
Coleman, KS ;
Bagshaw, CB ;
Green, MLH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) :12664-12665
[2]  
Balavoine F, 1999, ANGEW CHEM INT EDIT, V38, P1912, DOI 10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO
[3]  
2-2
[4]   Layer-by-layer assembly of 1,4-diaminoanthraquinone and glucose oxidase [J].
Berchmans, S ;
Sathyajith, R ;
Yegnaraman, V .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 77 (02) :390-396
[5]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[6]   Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J].
Dai, ZH ;
Liu, SQ ;
Ju, HX ;
Chen, HY .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (08) :861-867
[7]   Amperometric nitric oxide biosensor based on the immobilization of hemoglobin on a nanometer-sized gold colloid modified Au electrode [J].
Gu, HY ;
Yu, AM ;
Yuan, SS ;
Chen, HY .
ANALYTICAL LETTERS, 2002, 35 (04) :647-661
[8]   Layer-by-layer nanotube template synthesis [J].
Hou, SF ;
Harrell, CC ;
Trofin, L ;
Kohli, P ;
Martin, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5674-5675
[9]   Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces [J].
Jin, YD ;
Shao, Y ;
Dong, SJ .
LANGMUIR, 2003, 19 (11) :4771-4777
[10]   Thermal stability and electron transfer reaction of PEO-modified hemoglobin cast on an ITO electrode in polymer electrolytes [J].
Kawahara, NY ;
Ohno, H .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1493-1497