A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas

被引:149
作者
Mani, Kartik M. [1 ]
Lefebvre, Celine [2 ]
Wang, Kai [1 ]
Lim, Wei Keat [1 ]
Basso, Katia [3 ,4 ]
Dalla-Favera, Riccardo [3 ,4 ]
Califano, Andrea [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat C2B2, New York, NY USA
[3] Columbia Univ, Inst Canc Genet, New York, NY USA
[4] Columbia Univ, Herbert irving Comprehens Canc Ctr, New York, NY USA
关键词
B-cell lymphoma; drug mechanism-of-action (MOA); gene network; interactome; oncogene;
D O I
10.1038/msb.2008.2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The computational identification of oncogenic lesions is still a key open problem in cancer biology. Although several methods have been proposed, they fail to model how such events are mediated by the network of molecular interactions in the cell. In this paper, we introduce a systems biology approach, based on the analysis of molecular interactions that become dysregulated in specific tumor phenotypes. Such a strategy provides important insights into tumorigenesis, effectively extending and complementing existing methods. Furthermore, we show that the same approach is highly effective in identifying the targets of molecular perturbations in a human cellular context, a task virtually unaddressed by existing computational methods. To identify interactions that are dysregulated in three distinct non-Hodgkin's lymphomas and in samples perturbed with CD40 ligand, we use the B-cell interactome (BCI), a genome-wide compendium of human B-cell molecular interactions, in combination with a large set of microarray expression profiles. The method consistently ranked the known gene in the top 20 (0.3%), outperforming conventional approaches in 3 of 4 cases.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Genetic regulators of large-scale transcriptional signatures in cancer [J].
Adler, AS ;
Lin, MH ;
Horlings, H ;
Nuyten, DSA ;
van de Vijver, MJ ;
Chang, HY .
NATURE GENETICS, 2006, 38 (04) :421-430
[2]   Burkitt's lymphoma: new insights into molecular pathogenesis [J].
Bellan, C ;
Lazzi, S ;
De Falco, G ;
Nyongo, A ;
Giordano, A ;
Leoncini, L .
JOURNAL OF CLINICAL PATHOLOGY, 2003, 56 (03) :188-192
[3]   Molecular pathways in follicular lymphoma [J].
Bende, R. J. ;
Smit, L. A. ;
van Noesel, C. J. M. .
LEUKEMIA, 2007, 21 (01) :18-29
[4]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[5]   Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks [J].
di Bernardo, D ;
Thompson, MJ ;
Gardner, TS ;
Chobot, SE ;
Eastwood, EL ;
Wojtovich, AP ;
Elliott, SJ ;
Schaus, SE ;
Collins, JJ .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :377-383
[6]   Cancer biology - Signatures guide drug choice [J].
Downward, J .
NATURE, 2006, 439 (7074) :274-275
[7]   A network biology approach to prostate cancer [J].
Ergun, Ayla ;
Lawrence, Carolyn A. ;
Kohanski, Michael A. ;
Brennan, Timothy A. ;
Collins, James J. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[8]   Inferring genetic networks and identifying compound mode of action via expression profiling [J].
Gardner, TS ;
di Bernardo, D ;
Lorenz, D ;
Collins, JJ .
SCIENCE, 2003, 301 (5629) :102-105
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]  
Hamosh A, 2000, HUM MUTAT, V15, P57, DOI 10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO