Symmetry at the active site of the ribosome: structural and functional implications

被引:82
作者
Agmon, F [1 ]
Bashan, A [1 ]
Zarivach, R [1 ]
Yonath, A [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
关键词
peptide bond formation; ribosome structure and function; ribosomal symmetrical region; rotatory mechanism;
D O I
10.1515/BC.2005.098
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sizable symmetrical region, comprising 180 ribosomal RNA nucleotides, which has been identified in and around the peptidyl transferase center (PTC) in crystal structures of eubacterial and archaeal large ribosomal subunits, indicates its universality, confirms that the ribosome is a ribozyme and evokes the suggestion that the PTC evolved by gene fusion. The symmetrical region can act as a center that coordinates amino acid polymerization by transferring intra-ribosomal signals between remote functional locations, as it connects, directly or through its extensions, the PTC, the three tRNA sites, the tunnel entrance, and the regions hosting elongation factors. Significant deviations from the overall symmetry stabilize the entire region and can be correlated with the shaping and guiding of the motion of the tRNA 3'-end from the A- into the P-site. The linkage between the elaborate PTC architecture and the spatial arrangements of the tRNA 3'-ends revealed the rotatory mechanism that integrates peptide bond formation, translocation within the PTC and nascent protein entrance into the exit tunnel. The positional catalysis exerted by the ribosome places the reactants in stereochemistry close to the intermediate state and facilitates the catalytic contribution of the P-site tRNA 2'-hydroxyl.
引用
收藏
页码:833 / 844
页数:12
相关论文
共 52 条
[1]   Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation facilitates peptide-bond formation, chirality discrimination and antibiotics synergism [J].
Agmon, I ;
Amit, M ;
Auerbach, T ;
Bashan, A ;
Baram, D ;
Bartels, H ;
Berisio, R ;
Greenberg, I ;
Harms, J ;
Hansen, HAS ;
Kessler, M ;
Pyetan, E ;
Schluenzen, F ;
Sittner, A ;
Yonath, A ;
Zarivach, R .
FEBS LETTERS, 2004, 567 (01) :20-26
[2]   On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes - Delivered on 20 October 2002 at the 28th FEBS Meeting in Istanbul [J].
Agmon, I ;
Auerbach, T ;
Baram, D ;
Bartels, H ;
Bashan, A ;
Berisio, R ;
Fucini, P ;
Hansen, HAS ;
Harms, J ;
Kessler, M ;
Peretz, M ;
Schluenzen, F ;
Yonath, A ;
Zarivach, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (12) :2543-2556
[3]   Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle [J].
Agrawal, RK ;
Spahn, CMT ;
Penczek, P ;
Grassucci, RA ;
Nierhaus, KH ;
Frank, J .
JOURNAL OF CELL BIOLOGY, 2000, 150 (03) :447-459
[4]   QUANTIFICATION OF TERTIARY STRUCTURAL CONSERVATION DESPITE PRIMARY SEQUENCE DRIFT IN THE GLOBIN FOLD [J].
ARONSON, HEG ;
ROYER, WE ;
HENDRICKSON, WA .
PROTEIN SCIENCE, 1994, 3 (10) :1706-1711
[5]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[6]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[7]   From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects [J].
Baram, D ;
Yonath, A .
FEBS LETTERS, 2005, 579 (04) :948-954
[8]   Ribosomal crystallography: Peptide bond formation and its inhibition [J].
Bashan, A ;
Zarivach, R ;
Schluenzen, F ;
Agmon, I ;
Harms, J ;
Auerbach, T ;
Baram, D ;
Berisio, R ;
Bartels, H ;
Hansen, HAS ;
Fucini, P ;
Wilson, D ;
Peretz, M ;
Kessler, M ;
Yonath, A .
BIOPOLYMERS, 2003, 70 (01) :19-41
[9]   Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression [J].
Bashan, A ;
Agmon, I ;
Zarivach, R ;
Schluenzen, F ;
Harms, J ;
Berisio, R ;
Bartels, H ;
Franceschi, F ;
Auerbach, T ;
Hansen, HAS ;
Kossoy, E ;
Kessler, M ;
Yonath, A .
MOLECULAR CELL, 2003, 11 (01) :91-102
[10]   23S rRNA positions essential for tRNA binding in ribosomal functional sites [J].
Bocchetta, M ;
Xiong, LQ ;
Mankin, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3525-3530