Pneumocystis carinii pneumonia is a hallmark disease associated with AIDS. An abundant glycoprotein, termed gpA, on the surface of P. carinii is considered an important factor in host-parasite interactions. The primary structure of ferret P. carinii gpA contains a carboxyl-terminal sequence characteristic of a signal for glycosylphosphatidylinositol (GPI) anchors. Here we report the capacity for this gpA carboxyl sequence to direct attachment of a secreted protein, human growth hormone (hGH), to the membranes of COS cells. A control fusion protein (hGHDAF37) was obtained which, under the direction of the GPI signal from decay accelerating factor, directs hGR cell surface expression. A construct (phGH2-1A30) was created similar to hGHDAF37 by fusing hGH to the putative GPI signal sequence encoded in the terminal 30 residues from a ferret P. carinii gpA cDNA clone. By indirect immunofluorescent staining, hGH was detected on the surface of COS cells transfected with phGH2-1A30; this surface location was confirmed by confocal laser cytometry. Metabolic labeling with [H-3]ethanolamine and subsequent immunopurification of hGH from cells transfected with phGH2-1A30 confirmed that a lipid moiety characteristic of a conventional GPI anchor was linked covalently to hGH, and cell surface hGH2-1A30 fusion protein was sensitive to enzymatic cleavage by phosphatidylinositol-phospholipase C. Furthermore, hGH2-1A30 recombinant protein cofractionated with 5'-nucleotidase, a classical GPI-anchored membrane marker. Together, these results indicate that the carboxyl-terminal residues of ferret P. carinii gpA constitute a biologically functional GPI consensus domain, thus providing a potential mechanism for antigenic variation of P. carinii gpA during P. carinii pneumonia.