Return to equilibrium for Pauli-Fierz systems

被引:46
作者
Derezinski, J
Jaksic, V
机构
[1] Univ Warsaw, Dept Math Methods Phys, PL-00682 Warsaw, Poland
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s00023-003-0146-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study ergodic properties of Pauli-Fierz systems - W*-dynamical systems often used to describe the interaction of a small quantum system with a bosonic free field at temperature T greater than or equal to 0. We prove that, for a small coupling constant uniform as the positive temperature T down arrow 0, a large class of Pauli-Fierz systems has the property of return to equilibrium. Most of our arguments are general and deal with mathematical theory of Pauli-Fierz systems for an arbitrary density of bosonic field.
引用
收藏
页码:739 / 793
页数:55
相关论文
共 32 条
[1]   On the existence and uniqueness of ground states of a generalized spin-boson model [J].
Arai, A ;
Hirokawa, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :455-503
[2]   REPRESENTATIONS OF CANONICAL COMMUTATION RELATIONS DESCRIBING A NONRELATIVISTIC INFINITE FREE BOSE GAS [J].
ARAKI, H ;
WOODS, EJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (05) :637-&
[3]  
Araki H., 1973, Publ. Res. Inst. Math. Sci. Kyoto, V9, P165
[4]   Quantum electrodynamics of confined nonrelativistic particles [J].
Bach, V ;
Frohlich, J ;
Sigal, IM .
ADVANCES IN MATHEMATICS, 1998, 137 (02) :299-395
[5]   Positive commutators and the spectrum of Pauli-Fierz Hamiltonian of atoms and molecules [J].
Bach, V ;
Fröhlich, J ;
Sigal, IM ;
Soffer, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :557-587
[6]   Return to equilibrium [J].
Bach, V ;
Fröhlich, J ;
Sigal, IM .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3985-4060
[7]  
Brattelli O., 1987, OPERATOR ALGEBRAS QU, V1
[8]  
BRATTELLI O, 1996, OPERATOR ALGEBRAS QU, V2
[9]   MARKOVIAN MASTER EQUATIONS [J].
DAVIES, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 39 (02) :91-110
[10]   Asymptotic completeness in quantum in field theory.: Massive Pauli-Fierz Hamiltonians [J].
Derezinski, J ;
Gérard, C .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (04) :383-450