Maximal height scaling of kinetically growing surfaces

被引:67
作者
Raychaudhuri, S [1 ]
Cranston, M
Przybyla, C
Shapir, Y
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.87.136101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The scaling properties of the maximal height of a growing self-affine surface with a lateral extent L are considered. In the late-time regime its value measured relative to the evolving average height scales like the roughness: h(L)* similar to L-alpha. For large values its distribution obeys logP(h(L)*) similar to -A(h(L)*/L-alpha)(a). In the early-time regime where the roughness grows as t(beta), we find h(L)* similar to t(beta)[1nL - (beta/alpha) 1nt + C](1/b) where either b = a or b is the corresponding exponent of the velocity distribution. These properties are derived from scaling and extreme-value arguments. They are corroborated by numerical simulations and supported by exact results for surfaces in 1D with the asymptotic behavior of a Brownian path.
引用
收藏
页码:1 / 136101
页数:4
相关论文
共 25 条
[1]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[2]   A CLUSTER OF GREAT FORMULAS [J].
CHUNG, KL .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 39 (1-3) :65-67
[3]   A NEW UNIVERSALITY CLASS FOR KINETIC GROWTH - ONE-DIMENSIONAL MOLECULAR-BEAM EPITAXY [J].
DASSARMA, S ;
TAMBORENEA, P .
PHYSICAL REVIEW LETTERS, 1991, 66 (03) :325-328
[4]   Universal large-deviation function of the Kardar-Parisi-Zhang equation in one dimension [J].
Derrida, B ;
Appert, C .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :1-30
[5]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[6]   THE SURFACE STATISTICS OF A GRANULAR AGGREGATE [J].
EDWARDS, SF ;
WILKINSON, DR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780) :17-31
[7]   SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL [J].
FAMILY, F ;
VICSEK, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02) :L75-L81
[8]  
FAMILY F, 1990, DYNAMICS FRACTALS SU
[9]   WIDTH DISTRIBUTION FOR RANDOM-WALK INTERFACES [J].
FOLTIN, G ;
OERDING, K ;
RACZ, Z ;
WORKMAN, RL ;
ZIA, RKP .
PHYSICAL REVIEW E, 1994, 50 (02) :R639-R642
[10]  
GALAMBOS J, 1994, EXTREME VALUE THEORY, P15