The Norwegian IPY-THORPEX: Polar Lows and Arctic Fronts during the 2008 Andoya Campaign

被引:34
作者
Kristjansson, J. E. [1 ]
Barstad, I. [2 ]
Aspelien, T. [3 ]
Fore, I.
Godoy, O. [3 ]
Hov, O. [3 ]
Irvine, E. [4 ]
Iversen, T. [3 ]
Kolstad, E. [2 ]
Nordeng, T. E. [3 ]
McInnes, H.
Randriamampianina, R. [3 ]
Reuder, J. [5 ]
Saetra, O. [3 ]
Shapiro, M. [5 ]
Spengler, T. [5 ]
Olafsson, H.
机构
[1] Univ Oslo, Dept Geosci, MetOs, POB 1022, N-0315 Oslo, Norway
[2] Uni Bjerknes Ctr, Bergen, Norway
[3] Norwegian Meteorol Inst, Oslo, Norway
[4] Univ Reading, Reading, Berks, England
[5] Univ Bergen, Inst Geophys, Bergen, Norway
关键词
AREA ENSEMBLE PREDICTIONS; BOUNDARY-LAYER; PART I; IMPACT; CLIMATOLOGY; FUTURE; FLOWS; WINDS; IASI; JET;
D O I
10.1175/2011BAMS2901.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
From a weather forecasting perspective, the Arctic poses particular challenges for mainly two reasons: 1) The observational data are sparse and 2) the weather phenomena responsible for severe weather, such as polar lows, Arctic fronts, and orographic influences on airflow, are poorly resolved and described by the operational numerical weather prediction (NWP) models. The Norwegian International Polar Year (IPY)The Observing System Research and Predictability Experiment (THORPEX) project (2007-10) sought to significantly improve weather forecasts of these phenomena through a combined modeling and observational effort. The crux of the observational effort was a 3-week international field campaign out of northern Norway in early 2008, combining airborne and surface-based observations. The main platform of the field campaign was the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) research aircraft Falcon, equipped with lidar systems for profiling of aerosols, humidity, and wind, in addition to in situ measurements and dropsondes. A total of 12 missions were flown, yielding detailed observations of polar lows, Arctic fronts, and orographic low-level jets near Spitsbergen, the coast of northern Norway, and the east coast of Greenland. The lidar systems enabled exceptionally detailed measurements of orographic jets caused by the orography of Spitsbergen. Two major polar low developments over the Norwegian Sea were captured during the campaign. In the first polar low case, three flights were carried out, providing a first-ever probing of the full life cycle of a polar low. Targeting observations by the aircraft in sensitive areas led to improvements in predicted track and intensity of the polar low. Here highlights from the field campaign, as well as from ongoing follow-up investigations, are presented. Highlights from the development of a new limited-area model ensemble prediction system for the Arctic, as well as an exploitation of new satellite data [Infrared Atmospheric Sounding Interferometer (IASI) data], are also included. (Page 1443)
引用
收藏
页码:1443 / +
页数:25
相关论文
共 76 条
[61]  
Rasmussen E.A., 2003, POLAR LOWS MESOSCALE
[62]  
Rasmussen EA, 2003, POLAR LOWS: MESOSCALE WEATHER SYSTEMS IN THE POLAR REGION, P150, DOI 10.1017/CBO9780511524974.004
[63]   The Greenland flow distortion experiment [J].
Renfrew, I. A. ;
Petersen ;
Outten ;
Sproson ;
Moore ;
Hay ;
Ohigashi ;
Zhang ;
Kristjansson ;
Fore ;
Olafsson ;
Gray ;
Irvine ;
Bovis ;
Brown ;
Swinbank ;
Haine ;
Lawrence ;
Pickart ;
Shapiro ;
Woolley .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2008, 89 (09) :1307-1324
[64]   An easterly tip jet off Cape Farewell, Greenland. I: Aircraft observations [J].
Renfrew, I. A. ;
Outten, S. D. ;
Moore, G. W. K. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (645) :1919-1933
[65]   Binary interactions between polar lows [J].
Renfrew, IA ;
Moore, GWK ;
Clerk, AA .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1997, 49 (05) :577-594
[66]   The Small Unmanned Meteorological Observer SUMO: A new tool for atmospheric boundary layer research [J].
Reuder, Joachim ;
Brisset, Pascal ;
Jonassen, Marius ;
Mueller, Martin ;
Mayer, Stephanie .
METEOROLOGISCHE ZEITSCHRIFT, 2009, 18 (02) :141-147
[67]  
Sandvik AD, 2002, MON WEATHER REV, V130, P1040, DOI 10.1175/1520-0493(2002)130<1040:CSOACJ>2.0.CO
[68]  
2
[69]  
Shapiro M A., 1987, Tellus, Series A, V39, P272, DOI [DOI 10.1111/J.1600-0870.1987.TB00309.X, DOI 10.3402/TELLUSA.V39I4.11761]
[70]   Strongly stratified easterly flows across Spitsbergen [J].
Skeie, P ;
Gronås, S .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2000, 52 (05) :473-486