An algebraic approach to the Kolmogorov-Sinai entropy

被引:14
作者
Alicki, R [1 ]
Andries, J [1 ]
Fannes, M [1 ]
Tuyls, P [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN, INST THEORET FYS, B-3001 HEVERLEE, BELGIUM
关键词
D O I
10.1142/S0129055X96000068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We revisit the notion of Kolmogorov-Sinai entropy for classical dynamical systems in terms of an algebraic formalism. This is the starting point for defining the entropy for general non-commutative systems. Hereby typical quantum tools are introduced in the statistical description of classical dynamical systems. We illustrate the power of these techniques by providing a simple, self-contained proof of the entropy formula for general automorphisms of n-dimensional tori.
引用
收藏
页码:167 / 184
页数:18
相关论文
共 16 条
[1]  
Accardi L., 1982, Publ. Rest. Inst. Math. Sct., V18, P97
[2]   DEFINING QUANTUM DYNAMICAL ENTROPY [J].
ALICKI, R ;
FANNES, M .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (01) :75-82
[3]   COMPARISON OF DYNAMICAL ENTROPIES FOR THE NONCOMMUTATIVE SHIFTS [J].
ALICKI, R ;
NARNHOFER, H .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 33 (03) :241-247
[4]  
ALICKI R, 1994, P C MEM A FRIG UD
[5]   THE DYNAMICAL ENTROPY OF THE QUANTUM ARNOLD CAT MAP [J].
ANDRIES, J ;
FANNES, M ;
TUYLS, P ;
ALICKI, R .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (04) :375-383
[6]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[7]  
Arnold V. I., 1967, PROBLEMES ERGODIQUES
[8]  
Brickell F., 1970, Differentiable manifolds: an introduction
[9]  
Cornfeld I. P., 1982, Ergodic Theory
[10]   ANOSOV ACTIONS ON NONCOMMUTATIVE ALGEBRAS [J].
EMCH, GG ;
NARNHOFER, H ;
THIRRING, W ;
SEWELL, GL .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) :5582-5599