DEFINING QUANTUM DYNAMICAL ENTROPY

被引:93
作者
ALICKI, R
FANNES, M
机构
[1] Institute of Theoretical Physics, University of Leuven, Heverlee
关键词
D O I
10.1007/BF00761125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an elementary definition of the dynamical entropy for a discrete-time quantum dynamical system. We apply our construction to classical dynamical systems and to the shift on a quantum spin chain. In the first case, we recover the Kolmogorov-Sinai invariant and, for the second, we find the mean entropy of the invariant state plus the logarithm of the dimension of the single-spin space.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 11 条
[1]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[2]   DYNAMIC ENTROPY OF C-STAR ALGEBRAS AND VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
NARNHOFER, H ;
THIRRING, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) :691-719
[3]   ENTROPY FOR AUTOMORPHISMS OF II1 VONNEUMANN ALGEBRAS [J].
CONNES, A ;
STORMER, E .
ACTA MATHEMATICA, 1975, 134 (3-4) :289-306
[4]  
Cornfeld Isaac P., 1982, ERGODIC THEORY, V245
[5]   POSITIVITY OF K-ENTROPY ON NON-ABELIAN K-FLOWS [J].
EMCH, GG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 29 (03) :241-252
[6]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[7]   NON-MARKOVIAN QUANTUM STOCHASTIC-PROCESSES AND THEIR ENTROPY [J].
LINDBLAD, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :281-294
[8]  
LINDBLAD G, 1988, LECT NOTES MATH, V1303, P183
[9]  
OHYA M., 1993, QUANTUM ENTROPY ITS
[10]   NEW DEFINITION OF DYNAMIC ENTROPY FOR NONCOMMUTATIVE SYSTEMS [J].
SAUVAGEOT, JL ;
THOUVENOT, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) :411-423