Minimum thermal conductance in graphene and boron nitride superlattice

被引:88
作者
Jiang, Jin-Wu [1 ,2 ]
Wang, Jian-Sheng [1 ,2 ]
Wang, Bing-Shen [3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
[3] Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, State Key Lab Semicond Superlattice & Microstruct, Beijing 100083, Peoples R China
关键词
CONDUCTIVITY; TRANSPORT;
D O I
10.1063/1.3619832
中图分类号
O59 [应用物理学];
学科分类号
摘要
The minimum thermal conductance versus supercell size (d(s)) is revealed in graphene and boron nitride superlattice with d(s) far below the phonon mean free path. The minimum value is reached at a constant ratio of d(s)/L approximate to 5%, where L is the thickness of the superlattice; thus, the minimum point of d(s) depends on L. The phenomenon is attributed to the localization property and the number of confined modes in the superlattice. With the increase of d(s), the localization of the confined mode is enhanced while the number of confined modes decreases, which directly results in the minimum thermal conductance. (C) 2011 American Institute of Physics. [doi:10.1063/1.3619832]
引用
收藏
页数:3
相关论文
共 24 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[3]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[4]   Minimum superlattice thermal conductivity from molecular dynamics [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Ni, ZH ;
Chen, MH .
PHYSICAL REVIEW B, 2005, 72 (17)
[5]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[6]   Molecular dynamics calculation of the thermal conductivity of superlattices [J].
Daly, BC ;
Maris, HJ ;
Imamura, K ;
Tamura, S .
PHYSICAL REVIEW B, 2002, 66 (02) :243011-243017
[7]  
FAN X, ARXIV10124934V1
[8]   GULP: A computer program for the symmetry-adapted simulation of solids [J].
Gale, JD .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (04) :629-637
[9]   CALCULATION OF PHONONS IN [001] AND [110] SI-GE STRAINED-LAYER SUPERLATTICES [J].
GHANBARI, RA ;
FASOL, G .
SOLID STATE COMMUNICATIONS, 1989, 70 (11) :1025-1029
[10]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)