Sensing and signalling in response to oxygen deprivation in plants and other organisms

被引:199
作者
Bailey-Serres, J [1 ]
Chang, R [1 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
oxygen sensing; gene expression; hypoxia; anoxia; alcohol dehydrogenase; reactive oxygen species; cytosolic calcium; second messenger; G-protein; ethylene;
D O I
10.1093/aob/mci206
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aims and Scope All aerobic organisms require molecular di-oxygen (O-2) for efficient production of ATP though oxidative phosphorylation. Cellular depletion of oxygen results in rapid molecular and physiological acclimation. The purpose of this review is to consider the processes of low oxygen sensing and response in diverse organisms, with special consideration of plant cells. Conclusions The sensing of oxygen deprivation in bacteria, fungi, metazoa and plants involves multiple sensors and signal transduction pathways. Cellular responses result in a reprogramming of gene expression and metabolic processes that enhance transient survival and can enable long-term tolerance to sub-optimal oxygen levels. The mechanism of sensing can involve molecules that directly bind or react with oxygen (direct sensing), or recognition of altered cellular homeostasis (indirect sensing). The growing knowledge of the activation of genes in response to oxygen deprivation has provided additional information on the response and acclimation processes. Conservation of calcium fluxes and reactive oxygen species as second messengers in signal transduction pathways in metazoa and plants may reflect the elemental importance of rapid sensing of cellular restriction in oxygen by aerobic organisms.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 113 条
[1]   Cellular oxygen sensing need in CNS function: physiological and pathological implications [J].
Acker, T ;
Acker, H .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (18) :3171-3188
[2]   Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions [J].
Alexeeva, S ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2003, 185 (01) :204-209
[3]   Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli [J].
Alexeeva, S ;
de Kort, B ;
Sawers, G ;
Hellingwerf, KJ ;
de Mattos, MJT .
JOURNAL OF BACTERIOLOGY, 2000, 182 (17) :4934-4940
[4]  
Archer SL, 2000, ADV EXP MED BIOL, V475, P219
[5]   O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase [J].
Archer, SL ;
Reeve, HL ;
Michelakis, E ;
Puttagunta, L ;
Waite, R ;
Nelson, DP ;
Dinauer, MC ;
Weir, EK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (14) :7944-7949
[6]   Selective translation of cytoplasmic mRNAs in plants [J].
Bailey-Serres, J .
TRENDS IN PLANT SCIENCE, 1999, 4 (04) :142-148
[7]   Ethylene biosynthesis and accumulation under drained and submerged conditions - A comparative study of two Rumex species [J].
Banga, M ;
Slaa, EJ ;
Blom, CWPM ;
Voesenek, LACJ .
PLANT PHYSIOLOGY, 1996, 112 (01) :229-237
[8]   Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expression in Arabidopsis [J].
Baxter-Burrell, A ;
Chang, R ;
Springer, P ;
Bailey-Serres, J .
ANNALS OF BOTANY, 2003, 91 (02) :129-141
[9]   RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance [J].
Baxter-Burrell, A ;
Yang, ZB ;
Springer, PS ;
Bailey-Serres, J .
SCIENCE, 2002, 296 (5575) :2026-2028
[10]   Antioxidants, oxidative damage and oxygen deprivation stress: a review [J].
Blokhina, O ;
Virolainen, E ;
Fagerstedt, KV .
ANNALS OF BOTANY, 2003, 91 (02) :179-194