Size tunable synthesis of cysteine-capped CdS nanoparticles by γ-irradiation

被引:53
作者
Chatterjee, A
Priyam, A
Das, SK
Saha, A
机构
[1] Kolkata Ctr, UGC DAE Consortium Sci Res, Kolkata 700098, W Bengal, India
[2] Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India
关键词
CdS nanoparticles; cysteine; gamma-irradiation; luminescence; stability;
D O I
10.1016/j.jcis.2005.07.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly water soluble and biocompatible L-cysteine-capped US nanoparticles having narrow size distribution were synthesized for the first time by gamma-irradiation technique without using any additional stabilizer. FTIR study shows that CdS nanoparticles are capped through mercapto-group of cysteine amino acid while its free amino and carboxylate groups make it amenable to bio-conjugation. Size and luminescence of the nanoparticles can be well controlled by varying the parameters like radiation dose, pH and concentration of cysteine. The observed results suggest that pH 7 can be optimum for the synthesis of L-cysteine-capped US nanoparticles. US nanoparticles synthesized with molar ratio of Cd2+:cysteine, 1:60 at pH 7 were found to be most luminescent. All nanoparticles formed lie in the size quantization regime and exhibit good crystallinity. Remarkable improvement in stability and luminescence was achieved on changing pH of as-prepared nanoparticles from 7 to 11. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:334 / 342
页数:9
相关论文
共 37 条
[1]   Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. [J].
Ahmad, A ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
LANGMUIR, 2003, 19 (08) :3550-3553
[2]   Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Mandal, D ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (41) :12108-12109
[3]   Quantum-dot concentrator and thermodynamic model for the global redshift [J].
Barnham, K ;
Marques, JL ;
Hassard, J ;
O'Brien, P .
APPLIED PHYSICS LETTERS, 2000, 76 (09) :1197-1199
[4]   Crystal field, phonon coupling and emission shift of Mn2+ in ZnS:Mn nanoparticles [J].
Chen, W ;
Sammynaiken, R ;
Huang, YN ;
Malm, JO ;
Wallenberg, R ;
Bovin, JO ;
Zwiller, V ;
Kotov, NA .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (02) :1120-1129
[5]   Luminescent CdS quantum dots as selective ion probes [J].
Chen, YF ;
Rosenzweig, Z .
ANALYTICAL CHEMISTRY, 2002, 74 (19) :5132-5138
[6]   Synthesis of CdS nanoparticles in colloidal state and its possible interaction with tyrosine [J].
Datta, A ;
Saha, A ;
Sinha, AK ;
Bhattacharyya, SN ;
Chatterjee, S .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2005, 78 (01) :69-75
[7]   Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films [J].
Gao, MY ;
Lesser, C ;
Kirstein, S ;
Möhwald, H ;
Rogach, AL ;
Weller, H .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (05) :2297-2302
[8]   Thiol-capping of CdTe nanocrystals:: An alternative to organometallic synthetic routes [J].
Gaponik, N ;
Talapin, DV ;
Rogach, AL ;
Hoppe, K ;
Shevchenko, EV ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7177-7185
[9]   Colloidal nanocrystals for telecommunications.: Complete coverage of the low-loss fiber windows by mercury telluride quantum dots [J].
Harrison, MT ;
Kershaw, SV ;
Burt, MG ;
Rogach, AL ;
Kornowski, A ;
Eychmüller, A ;
Weller, H .
PURE AND APPLIED CHEMISTRY, 2000, 72 (1-2) :295-307
[10]   RADIOLYTIC PRODUCTION AND PROPERTIES OF ULTRASMALL CDS PARTICLES [J].
HAYES, D ;
MICIC, OI ;
NENADOVIC, MT ;
SWAYAMBUNATHAN, V ;
MEISEL, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (11) :4603-4608