A Hybrid Heuristic for an Inventory Routing Problem

被引:135
作者
Archetti, Claudia [1 ]
Bertazzi, Luca [1 ]
Hertz, Alain [2 ,3 ]
Speranza, M. Grazia [1 ]
机构
[1] Univ Brescia, Dept Quantitat Methods, I-25122 Brescia, Italy
[2] Ecole Polytech, Dept Math & Ind Engn, Montreal, PQ H3C 3A7, Canada
[3] Ecole HEC, GERAD, Montreal, PQ H3T 2A7, Canada
关键词
inventory routing problem; metaheuristic; tabu search; optimization; integer programming; ALGORITHM; SEARCH;
D O I
10.1287/ijoc.1100.0439
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider an inventory routing problem in discrete time where a supplier has to serve a set of customers over a multiperiod horizon. A capacity constraint for the inventory is given for each customer, and the service cannot cause any stockout situation. Two different replenishment policies are considered: the order-up-to-level and the maximum-level policies. A single vehicle with a given capacity is available. The transportation cost is proportional to the distance traveled, whereas the inventory holding cost is proportional to the level of the inventory at the customers and at the supplier. The objective is the minimization of the sum of the inventory and transportation costs. We present a heuristic that combines a tabu search scheme with ad hoc designed mixed-integer programming models. The effectiveness of the heuristic is proved over a set of benchmark instances for which the optimal solution is known.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 19 条