Controlling poly(β-amino ester) network properties through macromer branching

被引:41
作者
Brey, Darren M. [1 ]
Ifkovits, Jamie L. [1 ]
Mozia, Robert I. [1 ]
Katz, Josh S. [1 ]
Burdick, Jason A. [1 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
关键词
macromer; biodegradable; tissue engineering; branching; photopolymerization;
D O I
10.1016/j.actbio.2007.10.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Photopolymerizable and degradable biomaterials are becoming important in the development of advanced materials in the fields of tissue engineering, drug delivery, and microdevices. We have recently developed a library of poly(beta-amino ester)s (PBAEs) that form networks with a wide range of mechanical properties and degradation rates that are controlled by simple alterations in the macromer molecular weight or chemical structure. In this study, the influence of macromer branching on network properties was assessed by adding the trifunctional monomer pentacrythritol triacrylate (PETA) during synthesis. This led to a dose-dependent increase in the network compressive modulus, tensile modulus, and glass transition temperature, and a decrease in the network soluble fraction, yet led to only minor variations in degradation profiles and reaction behavior. For instance, the tensile modulus increased from 1.98 +/- 0.09 MPa to 3.88 +/- 0.20 MPa when the macromer went from a linear structure to a more branched structure with the addition of PETA. When osteoblast-like cells were grown on thin films, there was an increase in cell adhesion and spreading as the amount of PETA incorporated during synthesis increased. Towards tissue engineering applications, porous scaffolds were fabricated by photopolymerizing around a poragen and then subsequently leaching the poragen. Interconnected pores were observed in the scaffolds and observed trends translated to the porous scaffold (i.e., increasing mechanics with increasing branching). These findings demonstrate a simple variation during macromer synthesis that can be used to further tune the physical properties of scaffolds for given applications, particularly for candidates from the PBAE library. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 40 条
[1]   A combinatorial library of photocrosslinkable and degradable materials [J].
Anderson, Daniel G. ;
Tweedie, Catherine A. ;
Hossain, Naushad ;
Navarro, Sergio M. ;
Brey, Darren M. ;
Van Vliet, Krystyn J. ;
Langer, Robert ;
Burdick, Jason A. .
ADVANCED MATERIALS, 2006, 18 (19) :2614-+
[2]   Photopolymerizable degradable polyanhydrides with osteocompatibility [J].
Anseth, KS ;
Shastri, VR ;
Langer, R .
NATURE BIOTECHNOLOGY, 1999, 17 (02) :156-159
[3]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[4]   The influence of comonomer composition on dimethacrylate resin properties for dental composites [J].
Anseth, KS ;
Goodner, MD ;
Reill, MA ;
Kannurpatti, AR ;
Newman, SM ;
Bowman, CN .
JOURNAL OF DENTAL RESEARCH, 1996, 75 (08) :1607-1612
[5]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[6]  
BREY DM, IN PRESS J BIOMED A
[7]   Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro [J].
Bryant, SJ ;
Nuttelman, CR ;
Anseth, KS .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (05) :439-457
[8]   Photo-patterning of porous hydrogels for tissue engineering [J].
Bryant, Stephanie J. ;
Cuy, Janet L. ;
Hauch, Kip D. ;
Ratner, Buddy D. .
BIOMATERIALS, 2007, 28 (19) :2978-2986
[9]   Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization [J].
Burdick, JA ;
Mason, MN ;
Hinman, AD ;
Thorne, K ;
Anseth, KS .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (01) :53-63
[10]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323