Fractality of the hydrodynamic modes of diffusion

被引:42
作者
Gaspard, P
Claus, I
Gilbert, T
Dorfman, JR
机构
[1] Free Univ Brussels, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.86.1506
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transport by normal diffusion can be decomposed into hydrodynamic modes which relax exponentially toward the equilibrium state. In chaotic systems with 2 degrees of freedom, the fine scale structures of these modes are singular and fractal, characterized by a Hausdorff dimension given in tens of Ruelle's topological pressure. For long-wavelength modes, we relate the Hausdorff dimension to the diffusion coefficient and the Lyapunov exponent. This relationship is tested numerically on two Lorentz gases, one with hard repulsive forces, the other with attractive, Yukawa forces. The agreement with theory is excellent.
引用
收藏
页码:1506 / 1509
页数:4
相关论文
共 42 条
[1]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[2]  
Bowen R., 1979, PUBLICATIONS MATH IH, V50, P11, DOI [DOI 10.1007/BF02684767, 10.1007/BF02684767]
[3]   MARKOV PARTITIONS FOR DISPERSED BILLIARDS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) :247-280
[4]   Entropy, Lyapunov exponents, and mean free path for billiards [J].
Chernov, N .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :1-29
[5]   STEADY-STATE ELECTRICAL-CONDUCTION IN THE PERIODIC LORENTZ GAS [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) :569-601
[6]   DERIVATION OF OHM LAW IN A DETERMINISTIC MECHANICAL MODEL [J].
CHERNOV, NI ;
EYINK, GL ;
LEBOWITZ, JL ;
SINAI, YG .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2209-2212
[7]   STATISTICAL PROPERTIES OF THE PERIODIC LORENTZ GAS - MULTIDIMENSIONAL CASE [J].
CHERNOV, NI .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (1-2) :11-53
[8]   The existence of Burnett coefficients in the periodic Lorentz gas [J].
Chernov, NI ;
Dettmann, CP .
PHYSICA A, 2000, 279 (1-4) :37-44
[9]  
CHERNOV NI, NLINCD0003038
[10]   Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states [J].
Dellago, C ;
Posch, HA ;
Hoover, WG .
PHYSICAL REVIEW E, 1996, 53 (02) :1485-1501