Accumulating evidence indicates that neurogenesis in the adult brain occurs in restricted brain regions, including the hippocampal dentate gyrus and is promoted by ischemia. The mechanism responsible for ischemia-induced neurogenesis in the adult brain, however, remains unclear. Notch pathway plays a pivotal role in the regulation of the timing for differentiation and determination of the fate of neural progenitor cells in the developing nervous system. To elucidate the mechanism underlying ischemia-induced neurogenesis, we investigated changes in the expression of mRNAs of Hes5, which is a downstream target of Notch, and Mash 1, a neurogenic basic helix-loop-helix factor, which is negatively regulated by Hes5, in the adult hippocampal dentate gyrus after transient forebrain ischemia. Transient forebrain ischemia was produced by four-vessel occlusion procedure in rats. The levels of Hes5 mRNA decreased on days 1 and 3 after the start of reperfusion and the decreased levels of the mRNA returned to the basal level by 5 days after ischemia. In contrast, the level of Mash 1 mRNA increased on day 1 and then returned to the basal level by 3 days after ischemia. These results suggest that an inhibition of Notch activity and subsequent expression of neurogenic basic helix-loop-helix factors, including Mash 1, may, at least in part, contribute to ischemia-induced neurogenesis in the adult dentate gyrus. (c) 2005 Elsevier Ireland Ltd. All rights reserved.