Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry

被引:465
作者
Nühse, TS
Stensballe, A
Jensen, ON
Peck, SC
机构
[1] John Innes Ctr Plant Sci Res, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
[2] Univ So Denmark, Dept Biochem & Mol Biol, DK-5230 Odense M, Denmark
关键词
D O I
10.1074/mcp.T300006-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H+-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.
引用
收藏
页码:1234 / 1243
页数:10
相关论文
共 54 条
[1]   ISOLATION OF PHOSPHOPROTEINS BY IMMOBILIZED METAL (FE-3+) AFFINITY-CHROMATOGRAPHY [J].
ANDERSSON, L ;
PORATH, J .
ANALYTICAL BIOCHEMISTRY, 1986, 154 (01) :250-254
[2]   Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2:: Mapping of residues that when altered give rise to an activated enzyme [J].
Axelsen, KB ;
Venema, K ;
Jahn, T ;
Baunsgaard, L ;
Palmgren, MG .
BIOCHEMISTRY, 1999, 38 (22) :7227-7234
[3]   Early signal transduction pathways in plant-pathogen interactions [J].
Blumwald, E ;
Aharon, GS ;
Lam, BCH .
TRENDS IN PLANT SCIENCE, 1998, 3 (09) :342-346
[4]   Quantitation of changes in protein phosphorylation: A simple method based on stable isotope labeling and mass spectrometry [J].
Bonenfant, D ;
Schmelzle, T ;
Jacinto, E ;
Crespo, JL ;
Mini, T ;
Hall, MN ;
Jenoe, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (03) :880-885
[5]  
Boyle WJ., 1991, METHOD ENZYMOL, V201, P110
[7]   Plants have a sensitive perception system for the most conserved domain of bacterial flagellin [J].
Felix, G ;
Duran, JD ;
Volko, S ;
Boller, T .
PLANT JOURNAL, 1999, 18 (03) :265-276
[8]   Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae [J].
Ficarro, SB ;
McCleland, ML ;
Stukenberg, PT ;
Burke, DJ ;
Ross, MM ;
Shabanowitz, J ;
Hunt, DF ;
White, FM .
NATURE BIOTECHNOLOGY, 2002, 20 (03) :301-305
[9]   Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947 [J].
Fuglsang, AT ;
Visconti, S ;
Drumm, K ;
Jahn, T ;
Stensballe, A ;
Mattei, B ;
Jensen, ON ;
Aducci, P ;
Palmgren, MG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36774-36780
[10]  
Gobom J, 1999, J MASS SPECTROM, V34, P105, DOI 10.1002/(SICI)1096-9888(199902)34:2<105::AID-JMS768>3.0.CO