The influence of relative sample size in training artificial neural networks

被引:23
作者
Blamire, PA
机构
[1] Department of Geography, University of Wales Swansea, Swansea, SA2 8PP, Singleton Park
基金
英国自然环境研究理事会;
关键词
D O I
10.1080/01431169608949000
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This Letter explores the impact of the relative size of the sample sets used to define candidate classes on the classification accuracy obtained using artifical neural network techniques. It is suggested that, to avoid any classification bias, samples should be weighted appropriately to reflect the 'complexity' of each class. Thus, broadly defined classes with a high intra-class variability, such as 'built', should be trained on larger samples than more narrowly defined classes, such as 'soil'. The Letter also highlights the degree of variation between runs, a consequence of converging towards local rather than global error minima.
引用
收藏
页码:223 / 230
页数:8
相关论文
共 9 条
[1]   MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS [J].
BISCHOF, H ;
SCHNEIDER, W ;
PINZ, AJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03) :482-490
[2]   REMOTE-SENSING IN LAND-USE PLANNING - AN APPLICATION IN WEST CENTRAL SCOTLAND USING SPOT-SIMULATION DATA [J].
BUCHAN, GM ;
HUBBARD, NK .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1986, 7 (06) :767-777
[3]  
FOODY GM, 1993, 19TH P ANN C REM SEN, P211
[4]  
HEPNER GF, 1990, PHOTOGRAMM ENG REM S, V56, P469
[5]   LAND-COVER DISCRIMINATION IN SPOT HRV IMAGERY USING AN ARTIFICIAL NEURAL NETWORK - A 20-CLASS EXPERIMENT [J].
KANELLOPOULOS, I ;
VARFIS, A ;
WILKINSON, GG ;
MEGIER, J .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1992, 13 (05) :917-924
[6]  
ROSENFIELD GH, 1986, PHOTOGRAMM ENG REM S, V52, P223
[7]  
STORY M, 1986, PHOTOGRAMM ENG REM S, V52, P397
[9]   OPTIMIZATION OF TRAINING DATA REQUIRED FOR NEURO-CLASSIFICATION [J].
ZHUANG, X ;
ENGEL, BA ;
LOZANOGARCIA, DF ;
FERNANDEZ, RN ;
JOHANNSEN, CJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (16) :3271-3277