Finite element methods and their convergence for elliptic and parabolic interface problems

被引:439
作者
Chen, ZM
Zou, J [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, NT, Hong Kong
[2] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
关键词
D O I
10.1007/s002110050336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal L-2-norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical.
引用
收藏
页码:175 / 202
页数:28
相关论文
共 26 条
[1]  
[Anonymous], 1994, Numerical Algorithms
[2]  
[Anonymous], 1971, NUMERICAL SOLUTION P
[3]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[4]   A FINITE-ELEMENT METHOD FOR SOLVING ELLIPTIC-EQUATIONS WITH NEUMANN DATA ON A CURVED BOUNDARY USING UNFITTED MESHES [J].
BARRETT, JW ;
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1984, 4 (03) :309-325
[5]   A PRACTICAL FINITE-ELEMENT APPROXIMATION OF A SEMIDEFINITE NEUMANN PROBLEM ON A CURVED DOMAIN [J].
BARRETT, JW ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1987, 51 (01) :23-36
[6]   SOME ESTIMATES FOR A WEIGHTED L2 PROJECTION [J].
BRAMBLE, JH ;
XU, JC .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :463-476
[7]   AN ERROR ESTIMATE FOR A FINITE-ELEMENT SCHEME FOR A PHASE FIELD MODEL [J].
CHEN, ZM ;
HOFFMANN, KH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1994, 14 (02) :243-255
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[10]  
FEISTAUER M, 1987, NUMER MATH, V50, P451, DOI 10.1007/BF01396664