This article describes a new and rapid method to determine the pumping rate of P-glycoprotein (P-gp) in intact cells. Multidrug resistant (MDR) human epidermoid carcinoma KB8-5 cells (containing P-gp) were loaded with daunorubicin (DNR) in the absence or in the presence of verapamil, sufficient to inhibit DNR pumping by P-gp. In either case, the cells were resuspended in medium devoid of DNR and the subsequent increase of the DNR fluorescence intensity was measured as a function of time, For cells loaded with the same amount of drug, the free cytosolic drug concentration (C-i(t)) was a unique function of the DNR medium concentration (C-o(t)). The cellular drug content in the presence of verapamil decreased nonlinearly with decreasing extracellular drug concentration, indicating that the intracellular drug apparent distribution volume increased with decreasing cellular drug content. At each fluorescence intensity, we calculated the P-gp mediated (verapamil-inhibitable) DNR transport rate from the rate of increase of the DNR fluorescence intensity in the absence of verapamil minus the rate of increase of the DNR fluorescence intensity in the presence of verapamil. When plotted against the intracellular free drug concentration (as calculated from the total cellular drug content and a separately determined relation between the total cellular drug content and the intracellular free drug concentration: the apparent distribution volume), this P-gp mediated DNR transport rate showed saturation of P-gp at higher DNR concentrations. The results imply that P-gp mediated DNR transport is saturable (the value of K-M is in the order of 1 mu M).