Electrical impedance tomography (vol 18, pg 99, 2002)

被引:35
作者
Borcea, L [1 ]
机构
[1] Rice Univ, Houston, TX 77005 USA
关键词
D O I
10.1088/0266-5611/19/4/501
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some additional references and clarifying statements to the topical review 'Electrical impedance tomography'.
引用
收藏
页码:997 / 998
页数:2
相关论文
共 15 条
[1]   Stability of the inverse conductivity problem in the plane for less regular conductivities [J].
Barceló, JA ;
Barceló, T ;
Ruiz, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 173 (02) :231-270
[2]   Electrical impedance tomography [J].
Borcea, L .
INVERSE PROBLEMS, 2002, 18 (06) :R99-R136
[3]   Numerical implementation of two noniterative methods for locating inclusions by impedance tomography [J].
Brühl, M ;
Hanke, M .
INVERSE PROBLEMS, 2000, 16 (04) :1029-1042
[4]  
Brühl M, 2001, SIAM J MATH ANAL, V32, P1327
[5]   A simple method for solving inverse scattering problems in the resonance region [J].
Colton, D ;
Kirsch, A .
INVERSE PROBLEMS, 1996, 12 (04) :383-393
[6]  
FEDEEV LD, 1996, SOV PHYS DOKL, V10, P1033
[7]   Reconstruction of the shape of the inclusion by boundary measurements [J].
Ikehata, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (7-8) :1459-1474
[8]   Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements [J].
Ikehata, M ;
Siltanen, S .
INVERSE PROBLEMS, 2000, 16 (04) :1043-1052
[9]  
Ikehata M., 2000, Journal of Inverse and Ill-Posed Problems, V8, P367
[10]   Reconstruction of an obstacle from the scattering amplitude at a fixed frequency [J].
Ikehata, M .
INVERSE PROBLEMS, 1998, 14 (04) :949-954