Reconstruction of the shape of the inclusion by boundary measurements

被引:78
作者
Ikehata, M [1 ]
机构
[1] Gunma Univ, Fac Engn, Dept Math, Kiryu, Gumma 376, Japan
关键词
D O I
10.1080/03605309808821390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a formula for the reconstruction of the shape of the unknown inclusion by means of the Dirichlet to Neumann map.
引用
收藏
页码:1459 / 1474
页数:16
相关论文
共 10 条
[1]   SINGULAR SOLUTIONS OF ELLIPTIC-EQUATIONS AND THE DETERMINATION OF CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
ALESSANDRINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :252-272
[2]  
IKEHATA M, 1997, DETERMINING SHAPE IN
[3]  
IKEHATA M, 1997, IDENTIFICATION SHAPE
[4]  
IKEHATA M, IN RPESS J INVERSE I
[6]   The inverse conductivity problem with one measurement: Stability and estimation of size [J].
Kang, HB ;
Seo, JK ;
Sheen, DW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) :1389-1405
[7]   DETERMINING CONDUCTIVITY BY BOUNDARY MEASUREMENTS .2. INTERIOR RESULTS [J].
KOHN, RV ;
VOGELIUS, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :643-667
[8]   Global uniqueness for a two-dimensional inverse boundary value problem [J].
Nachman, AI .
ANNALS OF MATHEMATICS, 1996, 143 (01) :71-96
[9]   RECONSTRUCTIONS FROM BOUNDARY MEASUREMENTS [J].
NACHMAN, AI .
ANNALS OF MATHEMATICS, 1988, 128 (03) :531-576
[10]   INVERSE SCATTERING FOR SINGULAR POTENTIALS IN 2 DIMENSIONS [J].
SUN, ZQ ;
UHLMANN, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :363-374