Controlling Band Gap Energies in Cluster-Assembled Ionic Solids through Internal Electric Fields

被引:69
作者
Chaki, Nirmalya K. [1 ,2 ]
Mandal, Sukhendu [1 ,2 ]
Reber, Arthur C. [3 ]
Qian, Meichun [3 ]
Saavedra, Hector M. [1 ,2 ]
Weiss, Paul S. [1 ,2 ,4 ,5 ]
Khanna, Shiv N. [3 ]
Sen, Ayusman [1 ,2 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
cluster-assembled materials; arsenic clusters; band gap tuning; ZINTL IONS; CHEMISTRY; PD-2-AT-SN-18(4-); COMPLEXES; GERMANIUM; ANIONS; MODEL; RB; CS;
D O I
10.1021/nn101640r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assembling ionic solids where clusters are arranged in different architectures is a promising strategy for developing band gap-engineered nanomaterials. We synthesized a series of cluster-assembled ionic solids composed of [As-7-Au-2-As-7](4-) in zero-, one-, and two-dimensional architectures. Higher connectivity is expected to decrease the band gap energy through band broadening. However, optical measurements indicate that the band gap energy increases from 1.69 to 1.98 eV when moving from zero- to two-dimensional assemblies. This increase is a result of the local electric fields generated by the adjacent counterions, which preferentially stabilize the occupied cluster electronic states.
引用
收藏
页码:5813 / 5818
页数:6
相关论文
共 37 条
[1]   Room Temperature Light Emission from the Low-Dimensional Semiconductors AZrPS6 (A = K, Rb, Cs) [J].
Banerjee, Santanu ;
Szarko, Jodi M. ;
Yuhas, Benjamin D. ;
Malliakas, Christos D. ;
Chen, Lin X. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (15) :5348-+
[2]   From designer clusters to synthetic crystalline nanoassemblies [J].
Castleman, A. Welford, Jr. ;
Khanna, Shiv N. ;
Sen, Ayusman ;
Reber, Arthur C. ;
Qian, Meichun ;
Davis, Kevin M. ;
Peppernick, Samuel J. ;
Ugrinov, Angel ;
Merritt, Mark D. .
NANO LETTERS, 2007, 7 (09) :2734-2741
[3]   Cluster-Assembled Materials [J].
Claridge, Shelley A. ;
Castleman, A. W., Jr. ;
Khanna, Shiv N. ;
Murray, Christopher B. ;
Sen, Ayusman ;
Weiss, Paul S. .
ACS NANO, 2009, 3 (02) :244-255
[4]   Insights into current limitations of density functional theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
SCIENCE, 2008, 321 (5890) :792-794
[5]  
Emmerling F, 2002, Z NATURFORSCH B, V57, P963
[6]   The Pb122- and Pb102- zintl ions and the M@Pb122- and M@Pb102- cluster series where M = Ni, Pd, Pt [J].
Esenturk, Emren N. ;
Fettinger, James ;
Eichhorn, Bryan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (28) :9178-9186
[7]   Three- and four-coordinate gold(I) complexes [J].
Gimeno, MC ;
Laguna, A .
CHEMICAL REVIEWS, 1997, 97 (03) :511-522
[8]   [(Ni-Ni-Ni)@(Ge9)2]4- :: A linear triatomic nickel filament enclosed in a dimer of nine-atom germanium clusters [J].
Goicoechea, JM ;
Sevov, SC .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (26) :4026-4028
[9]   SUPERCONDUCTIVITY AT 18-K IN POTASSIUM-DOPED C-60 [J].
HEBARD, AF ;
ROSSEINSKY, MJ ;
HADDON, RC ;
MURPHY, DW ;
GLARUM, SH ;
PALSTRA, TTM ;
RAMIREZ, AP ;
KORTAN, AR .
NATURE, 1991, 350 (6319) :600-601
[10]   THEORY OF POLYHEDRAL MOLECULES .2. CRYSTAL FIELD MODEL [J].
HOFFMANN, R ;
GOUTERMAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (08) :2189-&