Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation

被引:384
作者
Lee, Seok Woo [1 ]
McDowell, Matthew T. [1 ]
Choi, Jang Wook [1 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Lithium-ion battery; silicon anode; phase change; anisotropic properties; LITHIUM INSERTION; NANOWIRES; BATTERIES; ANODES; ELECTRODES; DIFFUSION; DIAMOND; STORAGE; ALLOYS; SI;
D O I
10.1021/nl201787r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon is one of the most attractive anode materials for use in Li-ion batteries due to its similar to 10 times higher specific capacity than existing graphite anodes. However, up to 400% volume expansion during reaction with Li causes particle pulverization and fracture, which results in rapid capacity fading. Although Si nanomaterials have shown improvements in electrochemical performance, there is limited understanding of how volume expansion takes place. Here, we study the shape and volume changes of crystalline Si nanopillars with different orientations upon first lithiation and discover anomalous behavior. Upon lithiation, the initially circular cross sections of nanopillars with < 100 >, < 110 >, and < 111 > axial orientations expand into cross, ellipse, and hexagonal shapes, respectively. We explain this by identifying a high-speed lithium ion diffusion channel along the < 110 > direction, which causes preferential volume expansion along this direction. Surprisingly, the < 111 > and < 100 > nanopillars shrink in height after partial lithiation, while (110) nanopillars increase in height. The length contraction is suggested to be due to a collapse of the {111} planes early in the lithiation process. These results give new insight into the Si volume change process and could help in designing better battery anodes.
引用
收藏
页码:3034 / 3039
页数:6
相关论文
共 27 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[3]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[4]  
Campbell S A, 2001, SCI ENG MICROELECTRO
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[7]   Controlling Diffusion of Lithium in Silicon Nanostructures [J].
Chan, Tzu-Liang ;
Chelikowsky, James R. .
NANO LETTERS, 2010, 10 (03) :821-825
[8]   Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures [J].
Chang, CL ;
Wang, YF ;
Kanamori, Y ;
Shih, JJ ;
Kawai, Y ;
Lee, CK ;
Wu, KC ;
Esashi, M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (03) :580-585
[9]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[10]   Modeling diffusion-induced stress in nanowire electrode structures [J].
Deshpande, Rutooj ;
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :5081-5088