DNA-binding specificity and molecular functions of NAC transcription factors

被引:186
作者
Olsen, AN
Ernst, HA
Lo Leggio, L
Skriver, K
机构
[1] Univ Copenhagen, Inst Mol Biol & Physiol, DK-1353 Copenhagen, Denmark
[2] Univ Copenhagen, Ctr Crystallog Studies, Dept Chem, DK-2100 Copenhagen, Denmark
关键词
DNA binding; NAC transcription factor; dimerization; mutational analysis; binding site selection;
D O I
10.1016/j.plantsci.2005.05.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites for two NAC proteins. The consensus sequences are similar, but not identical; both contain the core CGT[GA]. The strict consensus sequences, comprising only the most frequent base at each position, are: TTNCGTA and TTGCGTGT. In silico analysis of target promoter regions corroborated the selection results. Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding. The ability of NAC proteins to dimerize and to bind DNA was analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus, the results presented here contribute significantly to our understanding of the specificity and molecular functions of the NAC protein DNA-binding domain. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:785 / 797
页数:13
相关论文
共 36 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]  
Bailey T., 1994, P 2 INT C INT SYST M, P28
[3]   TRF1 binds a bipartite telomeric site with extreme spatial flexibility [J].
Bianchi, A ;
Stansel, RM ;
Fairall, L ;
Griffith, JD ;
Rhodes, D ;
de Lange, T .
EMBO JOURNAL, 1999, 18 (20) :5735-5744
[4]  
Chen Lin, 1999, Current Opinion in Structural Biology, V9, P48
[5]   Structure of the GCM domain-DNA complex:: a DNA-binding domain with a novel fold and mode of target site recognition [J].
Cohen, SX ;
Moulin, M ;
Hashemolhosseini, S ;
Kilian, K ;
Wegner, M ;
Müller, CW .
EMBO JOURNAL, 2003, 22 (08) :1835-1845
[6]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[7]   Molecular characterization of AtNAM:: a member of the Arabidopsis NAC domain superfamily [J].
Duval, M ;
Hsieh, TF ;
Kim, SY ;
Thomas, TL .
PLANT MOLECULAR BIOLOGY, 2002, 50 (02) :237-248
[8]   Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J].
Ernst, HA ;
Olsen, AN ;
Skriver, K ;
Larsen, S ;
Lo Leggio, L .
EMBO REPORTS, 2004, 5 (03) :297-303
[9]   A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J].
Fujita, M ;
Fujita, Y ;
Maruyama, K ;
Seki, M ;
Hiratsu, K ;
Ohme-Takagi, M ;
Tran, LSP ;
Yamaguchi-Shinozaki, K ;
Shinozaki, K .
PLANT JOURNAL, 2004, 39 (06) :863-876
[10]   Recognition of specific DNA sequences [J].
Garvie, CW ;
Wolberger, C .
MOLECULAR CELL, 2001, 8 (05) :937-946