共 150 条
Biology of intracranial aneurysms: role of inflammation
被引:411
作者:
Chalouhi, Nohra
[1
,2
]
Ali, Muhammad S.
[1
,2
]
Jabbour, Pascal M.
[1
,2
]
Tjoumakaris, Stavropoula I.
[1
,2
]
Gonzalez, L. Fernando
[1
,2
]
Rosenwasser, Robert H.
[1
,2
]
Koch, Walter J.
[3
]
Dumont, Aaron S.
[1
,2
]
机构:
[1] Thomas Jefferson Univ, Dept Neurol Surg, Div Neurovasc & Endovasc Surg, Joseph & Marie Field Cerebrovasc Res Lab, Philadelphia, PA 19107 USA
[2] Jefferson Hosp Neurosci, Philadelphia, PA USA
[3] Temple Univ, Ctr Translat Med, Dept Pharmacol, Philadelphia, PA 19122 USA
关键词:
aneurysms;
endothelial cell;
inflammation;
intracranial;
smooth muscle cell;
NECROSIS-FACTOR-ALPHA;
INDUCED CEREBRAL ANEURYSMS;
SMOOTH-MUSCLE-CELLS;
FACTOR-KAPPA-B;
GENE-EXPRESSION PROFILES;
MATRIX METALLOPROTEINASES;
SUBARACHNOID HEMORRHAGE;
ENDOTHELIN ANTAGONISM;
ARTERIAL ENLARGEMENT;
HEMODYNAMIC STRESS;
D O I:
10.1038/jcbfm.2012.84
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Intracranial aneurysms (IAs) linger as a potentially devastating clinical problem. Despite intense investigation, our understanding of the mechanisms leading to aneurysm development, progression and rupture remain incompletely defined. An accumulating body of evidence implicates inflammation as a critical contributor to aneurysm pathogenesis. Intracranial aneurysm formation and progression appear to result from endothelial dysfunction, a mounting inflammatory response, and vascular smooth muscle cell phenotypic modulation producing a pro-inflammatory phenotype. A later final common pathway appears to involve apoptosis of cellular constituents of the vessel wall. These changes result in degradation of the integrity of the vascular wall leading to aneurysmal dilation, progression and eventual rupture in certain aneurysms. Various aspects of the inflammatory response have been investigated as contributors to IA pathogenesis including leukocytes, complement, immunoglobulins, cytokines, and other humoral mediators. Furthermore, gene expression profiling of IA compared with control arteries has prominently featured differential expression of genes involved with immune response/inflammation. Preliminary data suggest that therapies targeting the inflammatory response may have efficacy in the future treatment of IA. Further investigation, however, is necessary to elucidate the precise role of inflammation in IA pathogenesis, which can be exploited to improve the prognosis of patients harboring IA. Journal of Cerebral Blood Flow & Metabolism (2012) 32, 1659-1676; doi:10.1038/jcbfm.2012.84; published online 11 July 2012
引用
收藏
页码:1659 / 1676
页数:18
相关论文