A fully dynamic algorithm for planar width

被引:8
作者
Chan, TA [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1007/s00454-003-2923-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show how to maintain the width of a set of n planar. points subject to insertions and deletions of points in O(rootnlog(3) n) amortized time per update. Previously, no fully dynamic algorithm with a guaranteed sublinear time bound was known.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 21 条
[11]   Incremental and decremental maintenance of planar width [J].
Eppstein, D .
JOURNAL OF ALGORITHMS, 2000, 37 (02) :570-577
[12]  
Eppstein D., 1992, ORSA Journal on Computing, V4, P360, DOI 10.1287/ijoc.4.4.360
[13]   APPLICATIONS OF A SEMIDYNAMIC CONVEX-HULL ALGORITHM [J].
HERSHBERGER, J ;
SURI, S .
BIT, 1992, 32 (02) :249-267
[14]   COMPUTING THE WIDTH OF A SET [J].
HOULE, ME ;
TOUSSAINT, GT .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1988, 10 (05) :761-765
[15]   ON MAINTAINING THE WIDTH AND DIAMETER OF A PLANAR POINT-SET ONLINE [J].
Janardan, Ravi .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1993, 3 (03) :331-344
[16]   LINEAR OPTIMIZATION QUERIES [J].
MATOUSEK, J .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 14 (03) :432-448
[17]  
MEHLHORN K, 1984, DATA STRUCTURES ALGO, V3
[18]   MAINTENANCE OF CONFIGURATIONS IN THE PLANE [J].
OVERMARS, MH ;
VANLEEUWEN, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1981, 23 (02) :166-204
[19]  
Preparata F., 2012, Computational geometry: an introduction
[20]  
ROTE G, 1993, P 5 CAN C COMP GEOM, P258