Equiangular tight frames from Paley tournaments

被引:39
作者
Renes, Joseph M. [1 ]
机构
[1] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
Paley tournament; adjacency matrix; equiangular tight frames; spherical codes;
D O I
10.1016/j.laa.2007.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of equiangular tight frames having n = 2d - 1 elements drawn from either C-d or Cd-1 whenever n is either 2(k) - 1 for k epsilon N, or a power of a prime such that n = 3 mod 4. We also find a simple explicit expression for the prime power case by establishing a connection to a 2d-element equiangular tight frame based on quadratic residues. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:497 / 501
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 2004, PROC ERATO C QUANT I
[2]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[3]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[4]  
Beth T., 1986, DESIGN THEORY
[5]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201
[6]  
Conway J. H., 1996, EXP MATH, V5, P139
[7]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[8]   Optimal frames for erasures [J].
Holmes, RB ;
Paulsen, VI .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 (1-3) :31-51
[9]  
HORN RA, 1985, MARTRIX ANAL
[10]  
König H, 1999, MATH RES, V107, P201