Pore size control of mesoporous silicas from mixtures of sodium silicate and TEOS

被引:70
作者
Liu, Jian
Yang, Qihua
Zhao, X. S.
Zhang, Lei
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119620, Singapore
基金
中国国家自然科学基金;
关键词
mesoporous materials; large pore size; sodium silicate; buffer solution;
D O I
10.1016/j.micromeso.2007.02.045
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Mesoporous silicas with large and tunable pore size (10-16nm) were successfully synthesized from mixtures of sodium silicate (Na2SiO3) and tetraethoxysilane (TEOS) in acetic acid/sodium acetate buffer solution (pH 4.4, HAc-NaAc) using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO20PO70EO20, denoted as P123) as template, in which TEOS acts both as a swelling agent and a silica source. Highly ordered 2-D hexagonal and mesostructured cellular foam structure with large pore size could be obtained using sodium silicate and TEOS as silica source, respectively. By adjusting the initial molar ratio of TEOS/(Na2SiO3+TEOS) from 0 to 0.5, the pore sizes of the final ordered 2-D hexagonal mesoporous silicas could be precisely tuned from 10 to 15 run. The large pore size (15 nm) of the material was attributed to the slow hydrolysis and polymerization rate of TEOS in the buffer solution. The presence of ethanol in the synthesis system also has strong effects on the mesostructure and pore size of the materials. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 24 条
[1]   Tailoring pore size of ordered mesoporous silicas using one or two organic auxiliaries as expanders [J].
Blin, JL ;
Su, BL .
LANGMUIR, 2002, 18 (13) :5303-5308
[2]   Pore size engineering of mesoporous silicas using decane as expander [J].
Blin, JL ;
Otjacques, C ;
Herrier, G ;
Su, BL .
LANGMUIR, 2000, 16 (09) :4229-4236
[3]   A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway [J].
Boissière, C ;
Larbot, A ;
van der Lee, A ;
Kooyman, PJ ;
Prouzet, E .
CHEMISTRY OF MATERIALS, 2000, 12 (10) :2902-2913
[4]   Functionalization of SBA-15 with APTES and characterization of functionalized materials [J].
Chong, ASM ;
Zhao, XS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (46) :12650-12657
[5]   Ordered porous materials for emerging applications [J].
Davis, ME .
NATURE, 2002, 417 (6891) :813-821
[6]   Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores [J].
Fan, J ;
Yu, CZ ;
Lei, J ;
Zhang, Q ;
Li, TC ;
Tu, B ;
Zhou, WZ ;
Zhao, DY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) :10794-10795
[7]   Surfactant control of phases in the synthesis of mesoporous silica-based materials [J].
Huo, QS ;
Margolese, DI ;
Stucky, GD .
CHEMISTRY OF MATERIALS, 1996, 8 (05) :1147-1160
[8]   ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM [J].
KRESGE, CT ;
LEONOWICZ, ME ;
ROTH, WJ ;
VARTULI, JC ;
BECK, JS .
NATURE, 1992, 359 (6397) :710-712
[9]   Characterization of regular and plugged SBA-15 silicas by using adsorption and inverse carbon replication and explanation of the plug formation mechanism [J].
Kruk, M ;
Jaroniec, M ;
Joo, SH ;
Ryoo, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (10) :2205-2213
[10]   Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas [J].
Lettow, JS ;
Han, YJ ;
Schmidt-Winkel, P ;
Yang, PD ;
Zhao, DY ;
Stucky, GD ;
Ying, JY .
LANGMUIR, 2000, 16 (22) :8291-8295