A framework for worst-case and stochastic safety verification using barrier certificates

被引:416
作者
Prajna, Stephen [1 ]
Jadbabaie, Ali
Pappas, George J.
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
barrier certificates; hybrid systems; nonlinear systems; safety verification; stochastic systems; sum of squares optimization;
D O I
10.1109/TAC.2007.902736
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method.
引用
收藏
页码:1415 / 1428
页数:14
相关论文
共 54 条
[1]  
Alur R, 2003, LECT NOTES COMPUT SC, V2623, P4
[2]   THE ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS [J].
ALUR, R ;
COURCOUBETIS, C ;
HALBWACHS, N ;
HENZINGER, TA ;
HO, PH ;
NICOLLIN, X ;
OLIVERO, A ;
SIFAKIS, J ;
YOVINE, S .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :3-34
[3]   Discrete abstractions of hybrid systems [J].
Alur, R ;
Henzinger, TA ;
Lafferriere, G ;
Pappas, GJ .
PROCEEDINGS OF THE IEEE, 2000, 88 (07) :971-984
[4]  
ANAI H, 2001, LNCS, V2034, P63, DOI DOI 10.1007/3-540-45351-2_9
[5]  
[Anonymous], P IFAC C AN DES HYBR
[6]  
Asarin E, 2003, LECT NOTES COMPUT SC, V2623, P20
[7]  
ASARIN E, 2002, LNCS, V2404, P365, DOI DOI 10.1007/3-540-45657-0_30
[8]  
Aubin J. P., 1991, Viability Theory
[9]  
Bemporad A, 2000, LECT NOTES COMPUT SC, V1790, P45
[10]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767