Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum

被引:286
作者
Li, XG [1 ]
He, YQ [1 ]
Talukdar, SS [1 ]
Swihart, MT [1 ]
机构
[1] SUNY Buffalo, Dept Chem Engn, Buffalo, NY 14260 USA
关键词
D O I
10.1021/la034487b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon nanoparticles with bright visible photoluminescence have been prepared by a new combined vapor phase and solution phase process, using only inexpensive commodity chemicals. CO2 laser induced pyrolysis of silane was used to produce Si nanoparticles at high rates (20-200 mg/h). Particles with an average diameter as small as 5 nm were prepared directly by this vapor phase (aerosol) synthesis. Etching these particles with mixtures of hydrofluoric acid (HF) and nitric acid (HNO3) reduced the size and passivated the surface of these particles such that after etching they exhibited bright visible luminescence at room temperature. The wavelength of maximum photoluminescence (PL) intensity was controlled from above 800 nm to below 500 nm by controlling the etching time and conditions. Particles with blue emission (maximum PL intensity at 420 nm) were prepared by rapid thermal oxidation of orange-emitting particles. The particle synthesis methods; steady-state photoluminescence spectra; results of their characterization using TEM, XRD, FTIR absorption spectroscopy, and XPS; and preliminary assessments of the stability of the photoluminescence properties with time are presented here. Preparation of macroscopic quantities by the methods described here opens the door to chemical studies of free silicon nanoparticles that could previously be carried out only on porous silicon wafers, as well as to potential commercial applications of silicon nanoparticles.
引用
收藏
页码:8490 / 8496
页数:7
相关论文
共 36 条
[1]   Solution reduction synthesis of surface stabilized silicon nanoparticles [J].
Baldwin, RK ;
Pettigrew, KA ;
Ratai, E ;
Augustine, MP ;
Kauzlarich, SM .
CHEMICAL COMMUNICATIONS, 2002, (17) :1822-1823
[2]   Observation of a magic discrete family of ultrabright Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Smith, A ;
Rao, S ;
Twesten, R ;
Chaieb, S ;
Nayfeh, MH ;
Wagner, L ;
Mitas, L .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :841-843
[3]   A low-temperature solution phase route for the synthesis of silicon nanoclusters [J].
Bley, RA ;
Kauzlarich, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (49) :12461-12462
[4]   Photoluminescence from oxidised Si nanoparticles produced by CW CO2 laser synthesis in a continuous-flow reactor [J].
Borsella, E ;
Botti, S ;
Cremona, M ;
Martelli, S ;
Montereali, RM ;
Nesterenko, A .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1997, 16 (03) :221-223
[5]   Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol-gel processing [J].
Borsella, E ;
Falconieri, M ;
Botti, S ;
Martelli, S ;
Bignoli, F ;
Costa, L ;
Grandi, S ;
Sangaletti, L ;
Allieri, B ;
Depero, L .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 79 (01) :55-62
[6]   Photoluminescence from silicon nano-particles synthesized by laser-induced decomposition of silane [J].
Botti, S ;
Coppola, R ;
Gourbilleau, F ;
Rizk, R .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3396-3401
[7]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[8]   LUMINESCENCE OF SILICON MATERIALS - CHAINS, SHEETS, NANOCRYSTALS, NANOWIRES, MICROCRYSTALS, AND POROUS SILICON [J].
BRUS, L .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (14) :3575-3581
[9]   ELECTRONIC SPECTROSCOPY AND PHOTOPHYSICS OF SI NANOCRYSTALS - RELATIONSHIP TO BULK C-SI AND POROUS SI [J].
BRUS, LE ;
SZAJOWSKI, PF ;
WILSON, WL ;
HARRIS, TD ;
SCHUPPLER, S ;
CITRIN, PH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (10) :2915-2922
[10]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048