A globally and superlinearly convergent algorithm for nonsmooth convex minimization

被引:72
作者
Fukushima, M [1 ]
Qi, LQ [1 ]
机构
[1] UNIV NEW S WALES,SCH MATH,SYDNEY,NSW 2052,AUSTRALIA
关键词
nonsmooth convex optimization; Moreau-Yosida regularization; global convergence; superlinear convergence; semismoothness;
D O I
10.1137/S1052623494278839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that a possibly nondifferentiable convex minimization problem can be transformed into a differentiable convex minimization problem by way of the Moreau-Yosida regularization. This paper presents a globally convergent algorithm that is designed to solve the latter problem. Under additional semismoothness and regularity assumptions, the proposed algorithm is shown to have a Q-superlinear rate of convergence.
引用
收藏
页码:1106 / 1120
页数:15
相关论文
共 24 条
[1]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[2]   CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION [J].
CORREA, R ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :261-275
[3]   MINIMIZATION OF SC1 FUNCTIONS AND THE MARATOS EFFECT [J].
FACCHINEI, F .
OPERATIONS RESEARCH LETTERS, 1995, 17 (03) :131-137
[4]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[5]  
Hiriart-Urruty J. B., 1993, CONVEX ANAL MINIMIZA
[6]  
LEMARECHAL C, IN PRESS SIAM J OPTI
[7]  
LEMARECHAL C, 1995, MORE 1 ORDER DEV CON
[8]  
MARTINET R, 1970, RIRO, V4, P154
[9]   A quasi-second-order proximal bundle algorithm [J].
Mifflin, R .
MATHEMATICAL PROGRAMMING, 1996, 73 (01) :51-72
[10]  
MIFFLIN R, 1995, AMR9527 U NEW S WAL