CONVERGENCE OF SOME ALGORITHMS FOR CONVEX MINIMIZATION

被引:178
作者
CORREA, R
LEMARECHAL, C
机构
[1] UNIV CHILE, DEPT MATH, SANTIAGO, CHILE
[2] INRIA, LE CHESNAY, FRANCE
关键词
NONDIFFERENTIABLE OPTIMIZATION; CONVEX PROGRAMMING; PROXIMAL POINT METHOD; BUNDLE ALGORITHMS; GLOBAL CONVERGENCE;
D O I
10.1007/BF01585170
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a simple and unified technique to establish convergence of various minimization methods. These contain the (conceptual) proximal point method, as well as implementable forms such as bundle algorithms, including the classical subgradient relaxation algorithm with divergent series.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 19 条
[1]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[2]  
BELLMAN RE, 1966, NUMERICAL INVERSION, P143
[3]  
Cheney E.W., 1959, NUMER MATH, V1, P253
[4]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[5]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[6]   THE CUTTING-PLANE METHOD FOR SOLVING CONVEX PROGRAMS [J].
KELLEY, JE .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1960, 8 (04) :703-712
[7]   PROXIMITY CONTROL IN BUNDLE METHODS FOR CONVEX NONDIFFERENTIABLE MINIMIZATION [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1990, 46 (01) :105-122
[8]   A METHOD FOR SOLVING CERTAIN QUADRATIC-PROGRAMMING PROBLEMS ARISING IN NONSMOOTH OPTIMIZATION [J].
KIWIEL, KC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (02) :137-152
[9]   AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1983, 27 (03) :320-341
[10]  
LEMAIRE B, 1992, LECT NOTES ECON MATH, V382, P39