Molecular doping of graphene

被引:220
作者
Wehling, T. O. [1 ]
Novoselov, K. S. [2 ]
Morozov, S. V. [3 ]
Vdovin, E. E. [3 ]
Katsnelson, M. I. [4 ]
Geim, A. K. [2 ]
Lichtenstein, A. I. [1 ]
机构
[1] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[3] Inst Microelect Technol, Chernogolovka 142432, Russia
[4] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands
关键词
D O I
10.1021/nL072364w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene is considered as one of the most promising materials for post silicon electronics, as it combines high electron mobility with atomic thickness [Novoselov et al. Science 2004, 306, 666-669. Novoselov et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453]. The possibility of chemical doping and related excellent chemical sensor properties of graphene have been demonstrated experimentally [Schedin et al. Nat. Mater. 2007, 6, 652-655], but a microscopic understanding of these effects has been lacking, so far. In this letter, we present the first joint experimental and theoretical investigation of adsorbate-induced doping of graphene. A general relation between the doping strength and whether adsorbates are open- or closed-shell systems is demonstrated with the NO2 system: The single, open shell NO2 molecule is found to be a strong acceptor, whereas its closed shell dimer N2O4 causes only weak doping. This effect is pronounced by graphene's peculiar density of states (DOS), which provides an ideal situation for model studies of doping effects in semiconductors. We show that this DOS is ideal for "chemical sensor" applications and explain the recently observed [Schedin et al. Nat. Mater. 2007, 65 652-655] NO2 single molecule detection.
引用
收藏
页码:173 / 177
页数:5
相关论文
共 23 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Influence of mobile ions on nanotube based FET devices [J].
Bradley, K ;
Cumings, J ;
Star, A ;
Gabriel, JCP ;
Grüner, G .
NANO LETTERS, 2003, 3 (05) :639-641
[3]   Adsorption of NH3 and NO2 molecules on carbon nanotubes [J].
Chang, H ;
Lee, JD ;
Lee, SM ;
Lee, YH .
APPLIED PHYSICS LETTERS, 2001, 79 (23) :3863-3865
[4]   High-temperature ferromagnetism of sp electrons in narrow impurity bands:: application to CaB6 [J].
Edwards, D. M. ;
Katsnelson, M. I. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (31) :7209-7225
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   A matrix formalism for the Hall effect in multicarrier semiconductor systems [J].
Kim, JS .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (06) :3187-3194
[7]   Hysteresis caused by water molecules in carbon nanotube field-effect transistors [J].
Kim, W ;
Javey, A ;
Vermesh, O ;
Wang, O ;
Li, YM ;
Dai, HJ .
NANO LETTERS, 2003, 3 (02) :193-198
[8]   Nanotube molecular wires as chemical sensors [J].
Kong, J ;
Franklin, NR ;
Zhou, CW ;
Chapline, MG ;
Peng, S ;
Cho, KJ ;
Dai, HJ .
SCIENCE, 2000, 287 (5453) :622-625
[9]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[10]   NORM-CONSERVING AND ULTRASOFT PSEUDOPOTENTIALS FOR FIRST-ROW AND TRANSITION-ELEMENTS [J].
KRESSE, G ;
HAFNER, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (40) :8245-8257