On the convergence and optimization of the Baker-Campbell-Hausdorff formula

被引:40
作者
Blanes, S [1 ]
Casas, F [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
BCH formula; convergence; Lie algebras; Lie groups;
D O I
10.1016/j.laa.2003.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the problem of the convergence of the Baker-Campbell-Hausdorff series for Z = log(e(X)e(Y)) is revisited. We collect some previous results about the convergence domain and present a new estimate which improves all of them. We also provide a new expression of the truncated Lie presentation of the series up to sixth degree in X and Y requiring the minimum number of commutators. Numerical experiments suggest that a similar accuracy is reached with this approximation at a considerably reduced computational cost. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 1997, FDN LIE THEORY LIE T
[2]   EXPLICIT SOLUTION OF CONTINUOUS BAKER-CAMPBELL-HAUSDORFF PROBLEM AND A NEW EXPRESSION FOR PHASE OPERATOR [J].
BIALYNIC.I ;
MIELNIK, B ;
PLEBANSKI, J .
ANNALS OF PHYSICS, 1969, 51 (01) :187-+
[3]   Magnus and Fer expansions for matrix differential equations: The convergence problem [J].
Blanes, S ;
Casas, F ;
Oteo, JA ;
Ros, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01) :259-268
[4]   High order optimized geometric integrators for linear differential equations [J].
Blanes, S ;
Casas, F ;
Ros, J .
BIT NUMERICAL MATHEMATICS, 2002, 42 (02) :262-284
[5]  
Bourbaki Nicolas, 1989, Elements of Mathematics (Berlin)
[6]  
CASAS F, 2002, K2002 NTNU
[7]  
Day J., 1991, LINEAR MULTILINEAR A, V29, P207, DOI DOI 10.1080/03081089108818072
[8]  
DYNKIN EB, 1947, DOKL AKAD NAUK SSSR+, V57, P323
[9]   THE FORMAL POWER SERIES FOR LOG E-X E-Y [J].
GOLDBERG, K .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :13-21
[10]  
Hairer E., 2010, Springer Series in Computational Mathematics, V31