On the convergence and optimization of the Baker-Campbell-Hausdorff formula

被引:40
作者
Blanes, S [1 ]
Casas, F [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
BCH formula; convergence; Lie algebras; Lie groups;
D O I
10.1016/j.laa.2003.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the problem of the convergence of the Baker-Campbell-Hausdorff series for Z = log(e(X)e(Y)) is revisited. We collect some previous results about the convergence domain and present a new estimate which improves all of them. We also provide a new expression of the truncated Lie presentation of the series up to sixth degree in X and Y requiring the minimum number of commutators. Numerical experiments suggest that a similar accuracy is reached with this approximation at a considerably reduced computational cost. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 29 条
[11]  
Iserles A., 2000, Acta Numerica, V9, P215, DOI 10.1017/S0962492900002154
[12]   MAXIMAL REDUCTIONS IN THE BAKER-HAUSDORFF FORMULA [J].
KOLSRUD, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (01) :270-285
[13]   ON EXPANDING EXPONENTIAL [J].
KUMAR, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (12) :1928-&
[15]  
MITYAGIN BS, 1990, UNPUB
[16]   Convergence of the exponential Lie series [J].
Moan, PC ;
Oteo, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :501-508
[17]   On the existence of the exponential solution of linear differential systems [J].
Moan, PC ;
Oteo, JA ;
Ros, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (27) :5133-5139
[18]  
MOAN PC, 2002, THESIS U CAMBRIDGE
[19]   Computations in a free Lie algebra [J].
Munthe-Kaas, H ;
Owren, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :957-981
[20]  
Newman M., 1989, LINEAR MULTILINEAR A, V24, P301