The ability to bind to nitrocellulose is commonly accepted as being a universal property of proteins and has been widely used in many different fields of study. This property was first exploited in the study of DNA-binding proteins 30 years ago, in studies involving DNA binding by the lactose repressor (LacR) of Escherichia coli. Termed the filter-binding assay, it remains the quickest and easiest assay available for the study of protein-DNA interactions. However, the exact mechanism by which proteins bind to nitrocellulose remains uncertain. Given the supposedly universal nature of the interaction, we were surprised to notice that certain LacR variants were completely unable to bind simultaneously to DNA containing a single lac operator and nitrocellulose. Investigation of this loss of binding suggests that LacR requires a protein region that is both hydrophobic in nature and more or less unstructured, in order to bind to both nitrocellulose and DNA. In the case of wild-type, tetrameric LacR, the DNA-recognition domain that is not bound to DNA suffices. Dimeric LacR variants will only bind if they have certain C-terminal extensions. These experiments sound a cautionary note for the use of filter binding as an assay of choice,particularly in applications involving screening for the DNA-binding site of putative DNA-binding proteins. (C) 1999 Academic Press.