Magnetic microposts as an approach to apply forces to living cells

被引:272
作者
Sniadecki, Nathan J.
Anguelouch, Alexandre
Yang, Michael T.
Lamb, Corinne M.
Liu, Zhijun
Kirschner, Stuart B.
Liu, Yaohua
Reich, Daniel H.
Chen, Christopher S.
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[2] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
关键词
focal adhesions; magnetic nanowires; mechanotransduction; microfabrication; traction forces;
D O I
10.1073/pnas.0611613104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells respond to mechanical forces whether applied externally,or generated internally via the cytoskeleton. To study the cellular response to forces separately, we applied external forces to cells via microfabricated magnetic posts containing cobalt nanowires interspersed among an array of elastomeric posts, which acted as independent sensors to cellular traction forces. A magnetic field induced torque in the nanowires, which deflected the magnetic posts and imparted force to individual adhesions of cells attached to the array. Using this system, we examined the cellular reaction to applied forces and found that applying a step force led to an increase in local focal adhesion size at the site of application but not at nearby nonmagnetic posts. Focal adhesion recruitment was enhanced further when cells were subjected to multiple force actuations within the same time interval. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes. For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost, nor uniformly across the whole cell, but instead occurred at discrete locations along the cell periphery. Together, these data reveal an important dynamic biological relationship between external and internal forces and demonstrate the utility of this microfabricated system to explore this interaction.
引用
收藏
页码:14553 / 14558
页数:6
相关论文
共 32 条
[1]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[2]   Cell and molecular mechanics of biological materials [J].
Bao, G ;
Suresh, S .
NATURE MATERIALS, 2003, 2 (11) :715-725
[3]   Flexible substrata for the detection of cellular traction forces [J].
Beningo, KA ;
Wang, YL .
TRENDS IN CELL BIOLOGY, 2002, 12 (02) :79-84
[4]   Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize [J].
Bershadsky, Alexander ;
Kozlov, Michael ;
Geiger, Benjamin .
CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (05) :472-481
[5]   Isostaticity and controlled force transmission in the cytoskeleton: A model awaiting experimental evidence [J].
Blumenfeld, Raphael .
BIOPHYSICAL JOURNAL, 2006, 91 (05) :1970-1983
[6]   Focal adhesions, contractility, and signaling [J].
Burridge, K ;
ChrzanowskaWodnicka, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :463-518
[7]   Mechanotransduction at cell-matrix and cell-cell contacts [J].
Chen, CS ;
Tan, J ;
Tien, J .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2004, 6 :275-302
[8]   Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages [J].
Choquet, D ;
Felsenfeld, DP ;
Sheetz, MP .
CELL, 1997, 88 (01) :39-48
[9]   Calcium channel and glutamate receptor activities regulate actin organization in salamander retinal neurons [J].
Cristofanilli, Massimiliano ;
Akopian, Abram .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 575 (02) :543-554
[10]   Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction [J].
Davies, PF ;
Barbee, KA ;
Volin, MV ;
Robotewskyj, A ;
Chen, J ;
Joseph, L ;
Griem, ML ;
Wernick, MN ;
Jacobs, E ;
Polacek, DC ;
DePaola, N ;
Barakat, AI .
ANNUAL REVIEW OF PHYSIOLOGY, 1997, 59 :527-549