Plasma assisted growth of nanotubes and nanowires

被引:25
作者
Griffiths, H. [1 ]
Xu, C.
Barrass, T.
Cooke, M.
Iacopi, F.
Vereecken, P.
Esconjauregui, S.
机构
[1] Oxford Instruments Plasma Technol, Bristol, Avon, England
[2] IMEC, Louvain, Belgium
关键词
PECVD; carbon nanotubes; silicon nanowires;
D O I
10.1016/j.surfcoat.2007.04.067
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasma enhanced chemical vapour deposition (PECVD) growth of carbon nanotubes and silicon nanowires has been studied in an Oxford Instruments Plasma Technology reactor. Typical growth regimes involve a catalyst pre-treatment step and a growth step where a precursor gas is decomposed to form the desired nanostructure. For both catalyst pre-treatment and nanostructure growth, utilising plasma gives advantages over other growth methods. During catalyst pre-treatment, a plasma step can promote formation of nanoparticles from a thin metal film, while also increasing the catalytic activity compared with thermal pre-treatment. In the case of carbon nanotube growth, PECVD can result in vertically aligned nanotubes where thermal CVD gave randomly ordered structures. Further, gas composition is seen to strongly affect the morphology and dimensions of the nanotubes grown. For Si nanowire growth PECVD can reduce the growth temperature, and enable the use of catalysts more compatible for fabrication of Si-based devices. In both cases catalyst particles are observed at the tips of the gown nanostructures, indicating a tip-growth mechanism. (c) 2007 Elsevier B.V.. All rights reserved.
引用
收藏
页码:9215 / 9220
页数:6
相关论文
共 23 条
[1]   Nanotechnology - How does a nanofibre grow? [J].
Ajayan, PM .
NATURE, 2004, 427 (6973) :402-403
[2]   Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition [J].
Bae, EJ ;
Min, YS ;
Kang, D ;
Ko, JH ;
Park, W .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :5141-5145
[3]   Carbon nanotubes by plasma-enhanced chemical vapor deposition [J].
Bell, Martin S. ;
Teo, Kenneth B. K. ;
Lacerda, Rodrigo G. ;
Milne, W. I. ;
Hash, David B. ;
Meyyappan, M. .
PURE AND APPLIED CHEMISTRY, 2006, 78 (06) :1117-1125
[4]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[5]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[6]  
CUAN X, 2002, NATURE, V409, P66
[7]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[8]   High brightness electron beam from a multi-walled carbon nanotube [J].
de Jonge, N ;
Lamy, Y ;
Schoots, K ;
Oosterkamp, TH .
NATURE, 2002, 420 (6914) :393-395
[9]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[10]   CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION [J].
GUO, T ;
NIKOLAEV, P ;
THESS, A ;
COLBERT, DT ;
SMALLEY, RE .
CHEMICAL PHYSICS LETTERS, 1995, 243 (1-2) :49-54