Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale

被引:169
作者
Hu, Hanmei [1 ]
Huang, Xianhuai
Deng, Chonghai
Chen, Xiangying
Qian, Yitai
机构
[1] Anhui Inst Architecture & Ind, Dept Mat Sci & Engn, Hefei 230022, Anhui, Peoples R China
[2] Univ Sci & Technol China, Struct Res Lab, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
[4] Anhui Inst Architecture & Ind, Dept Environm Engn, Hefei 230022, Anhui, Peoples R China
[5] Hefei Univ, Hefei 230022, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
nanostructures; chemical synthesis; electron microscopy; optical properties;
D O I
10.1016/j.matchemphys.2007.05.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ZnO nanowires (-60%) and nanobelts (-40%) have been fabricated on a large scale via a low temperature one-pot hydrothermal technique. Na2CO3 was introduced not only as alkaline source but also as a controllable reagent for the crystal growth of ZnO. The comparison experiment results indicate that the adding amount of Na2CO3 greatly affect the length/diameter aspect ratios of 1D ZnO nanocrystals. In addition, the introduction of surfactant SDSN was indispensable in controlling the growth of belt-like ZnO. Room temperature photoluminescence spectrum showed a weak UV band emission at 379 nm and a strong broad yellow emission around 564 nm. A possible mechanism on the formation of the ZnO nanowires was proposed. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 31 条
[1]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[2]   Carbon nanotube quantum resistors [J].
Frank, S ;
Poncharal, P ;
Wang, ZL ;
de Heer, WA .
SCIENCE, 1998, 280 (5370) :1744-1746
[3]   Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas [J].
Golego, N ;
Studenikin, SA ;
Cocivera, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1592-1594
[4]   Low-temperature wafer-scale production of ZnO nanowire arrays [J].
Greene, LE ;
Law, M ;
Goldberger, J ;
Kim, F ;
Johnson, JC ;
Zhang, YF ;
Saykally, RJ ;
Yang, PD .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (26) :3031-3034
[5]   Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes [J].
Hu, JQ ;
Li, Q ;
Meng, XM ;
Lee, CS ;
Lee, ST .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :305-308
[6]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[7]   Hybrid nanorod-polymer solar cells [J].
Huynh, WU ;
Dittmer, JJ ;
Alivisatos, AP .
SCIENCE, 2002, 295 (5564) :2425-2427
[8]   Catalytic growth of ZnO nanotubes [J].
Kong, XH ;
Sun, XM ;
Li, XL ;
Li, YD .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 82 (03) :997-1001
[9]   Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J].
Kong, XY ;
Ding, Y ;
Yang, R ;
Wang, ZL .
SCIENCE, 2004, 303 (5662) :1348-1351
[10]   Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J].
Kong, XY ;
Wang, ZL .
NANO LETTERS, 2003, 3 (12) :1625-1631