A bacterial conjugation machinery recruited for pathogenesis

被引:95
作者
Seubert, A
Hiestand, R
de la Cruz, F
Dehio, C
机构
[1] Univ Basel, Biozentrum, Div Mol Microbiol, CH-4056 Basel, Switzerland
[2] Univ Cantabria, Dept Biol Mol, Santander 39011, Spain
[3] CSIC, CIB, Unidad Asociada, Madrid, Spain
关键词
D O I
10.1046/j.1365-2958.2003.03650.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans-complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens.
引用
收藏
页码:1253 / 1266
页数:14
相关论文
共 41 条
[1]   Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes [J].
Baron, C ;
Callaghan, DO ;
Lanka, E .
MOLECULAR MICROBIOLOGY, 2002, 43 (05) :1359-1365
[2]   CONSTRUCTION AND PROPERTIES OF A FAMILY OF PACYC184-DERIVED CLONING VECTORS COMPATIBLE WITH PBR322 AND ITS DERIVATIVES [J].
BARTOLOME, B ;
JUBETE, Y ;
MARTINEZ, E ;
DELACRUZ, F .
GENE, 1991, 102 (01) :75-78
[3]   GENERAL ORGANIZATION OF THE CONJUGAL TRANSFER GENES OF THE INCW PLASMID R388 AND INTERACTIONS BETWEEN R388 AND INCN AND INCP PLASMIDS [J].
BOLLAND, S ;
LLOSA, M ;
AVILA, P ;
DELACRUZ, F .
JOURNAL OF BACTERIOLOGY, 1990, 172 (10) :5795-5802
[4]  
BOLLAND S, 1991, THESIS U CANTABRIA S
[5]   The Brucella suis virB operon is induced intracellularly in macrophages [J].
Boschiroli, ML ;
Ouahrani-Bettache, S ;
Foulongne, V ;
Michaux-Charachon, S ;
Bourg, G ;
Allardet-Servent, A ;
Cazevieille, C ;
Liautard, JP ;
Ramuz, M ;
O'Callaghan, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1544-1549
[6]   REGULATION OF RIBOSOMAL-RNA PROMOTERS WITH A SYNTHETIC LAC OPERATOR [J].
BROSIUS, J ;
HOLY, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (22) :6929-6933
[7]   Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions [J].
Cao, TB ;
Saier, MH .
MICROBIOLOGY-SGM, 2001, 147 :3201-3214
[8]   Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines [J].
Christie, PJ .
MOLECULAR MICROBIOLOGY, 2001, 40 (02) :294-305
[9]   Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells [J].
Christie, PJ ;
Vogel, JP .
TRENDS IN MICROBIOLOGY, 2000, 8 (08) :354-360
[10]   Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter [J].
Dang, TA ;
Zhou, XR ;
Graf, B ;
Christie, PJ .
MOLECULAR MICROBIOLOGY, 1999, 32 (06) :1239-1253